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Abstract—We face up to the challenge of explainability in 
Multimodal Artificial Intelligence (MMAI). At the nexus of 
neuroscience-inspired and quantum computing, interpretable and 
transparent spin-geometrical neural architectures for early fusion of 
large-scale, heterogeneous, graph-structured data are envisioned, 
harnessing recent evidence for relativistic quantum neural coding of 
(co-)behavioral states in the self-organizing brain, under competitive, 
multidimensional dynamics. The designs draw on a self-dual classical 
description – via special Clifford-Lipschitz operations – of spinorial 
quantum states within registers of at most 16 qubits for efficient 
encoding of exponentially large neural structures. Formally ‘trained’, 
Lorentz neural architectures with precisely one lateral layer of 
exclusively inhibitory interneurons accounting for anti-modalities, as 
well as their co-architectures with intra-layer connections are 
highlighted. The approach accommodates the fusion of up to 16 time-
invariant interconnected (anti-)modalities and the crystallization of 
latent multidimensional patterns. Comprehensive insights are expected 
to be gained through applications to Multimodal Big Data, under 
diverse real-world scenarios.    

Keywords—Lorentz neural crystals, quantum state, anti-modality, 
multimodal fusion, multidimensional patterns 

I. INTRODUCTION  

 Advantages of quantum neural networks over their classical 
counterparts are being intensively investigated, as part of the 
nascent field at the intersection of machine learning and 
quantum information science [1]: quantum AI. It is hoped that, 
in addition to significant advancements in speed and capacity, 
quantum computing will offer a richer framework than classical 
computing for deep learning of complex representations of data 
[2], all the more so for geometric deep learning [3, 4]. At the 
same time, self-organizing artificial neural networks accounting 
for antagonistic interactions between excitatory neurons and 
inhibitory interneurons [5, 6] are emerging as a promising 
direction in artificial general intelligence as opposed to less 
biologically plausible deep learning networks. There are good 
reasons to believe that these developments may significantly 
benefit from concurrent critical advances in our understanding 
of multidimensional, brainwide activity by virtue of emergent 

large-scale neural recording technologies [7] and theoretical 
insights derived thereof [8, 9].  

 A valuable byproduct of this line of research may ultimately 
be to address major open challenges in applying AI across the 
complex network sciences, in the Big-Data era: the improvement 
of explainability and generalization ability of classical deep 
neural networks [10, 11], ideally moving from ‘black-box’ to 
‘glass-box’, human-in-the-loop models [12]; and the search for 
novel neural architectures optimally requiring minimal or no 
training [13, 14], including quantum neural architectures [15].  

In light of recent evidence for relativistic quantum neural 
coding of (co-)behavioral states in the self-organizing brain and 
an early crystallization of pertinent multidimensional synaptic 
(co-)architectures [9], we discuss formally ‘trained’, ‘glass-box’ 
neural architectures or, in short, neural crystals. Neural crystals 
are envisioned to allow (i) early fusion of multiple disparate, but 
interconnected datasets [16], namely large-scale, heterogeneous, 
graph-structured data, under scenarios where antagonistic 
interactions are inherently present; (ii) the recognition of 
underlying multidimensional patterns of representations. By 
geometrical reduction, the structures are steered towards 
efficient encoding of the information into a register of at most 
16 qubits, the respective quantum states being classically 
describable via special Clifford-Lipschitz operations and self-
duality under mirror supersymmetry. Emphasis is being placed 
on Lorentz neural crystals featuring a special multipartite graph 
topology of a low number of (non-hidden) layers. 

II. ASYMMETRIC SYMMETRIES 

The aim is to construct quantum-classical neural structures 
with topology given by a weighted spin geometry, namely by a 
non-simple finite digraph,            , where 

      denotes the weighted digraph with trivial structure 

associated to  . In particular, in the digraph      we 

let   be the set of its vertices and      be a reflexive 
relation on  . For the rest of technical and notational details 
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regarding the geometry   and the self-organizing dynamics 

of the respective spinorial flow network, F  (or the co-flow 
network, F , obtained by functional duality), we refer the 
reader to [9]. Here, we consider it necessary to restate: 
 Proposition: Let X     denote a nondegenerate 
quadratic form on an  -linear space X , with 

X = + < dim p q ; therewith,  X,  is isomorphic to the 

pseudo-Euclidean space , p q  with signature  p q  and positive 

index p . In X +  dim p q  

                              0  p q  .                             

That is, the null super-cone,   , of the quadratic norm,  , 

on the even Clifford algebra, 0
p qC , of  X,  is self-dual (W-

dual) to the common boundary, 0
p q , of the disjoint open sets 

0
p q  and 0 0\ 

 p q p q  , 0
p q  denoting the identity component of 

the special Clifford-Lipschitz group 0
p q . The statement is not 

true in X + 6 dim p q , with 0p , where mirror super-
symmetry breaks down. 

Translation: The above proposition hints at a principle for 
(in)stability of a broad class of time-invariant, multidimensional 
self-organizing networked systems. Such (non-)equilibrium 
state (W-duality or mirror supersymmetry) is economically 
effectuated by a bound on dimensionality: it is attainable at 
dimensionality values at most 16 and sustained by a latent 
asymmetry (i.e., a higher amount) of modalities vs. anti-
modalities. In the self-organizing brain, the principle underlies 
large-scale neural coding for spontaneous behavioral states 
(movements), on the grounds of deep neural matter-antimatter 
asymmetry (i.e., of a higher amount of excitatory vs. inhibitory 
neural subpopulations). See Fig. 1 in [9] for a simple, non-
technical explanation of the concept of W-duality allied to 
quantum superposition. 

 One may associate each vertex v   in   with a two-

level quantum system,  20
v

p q C , or qubit, with computational 

basis states 0
v
 and 1

v
 corresponding to the two states which, 

given the wave function 0
  p q C  (as defined in [9]), are 

implicit in the following condition:  

for every v     

             v   and, self-dually,   0
 p qv  ,        (1) 

with respect to the special quadratic algebra  0  p qC . For 0p
(1) defines a mirror-supersymmetric flow.  

A pure qubit state 
v

 at v   would then be given by                                

          0 1   
v v v

,                              (2) 

with 0,   p qC  and         01
p qC

.  

We write  v
v    for the quantum vertex module of  . 

For an exponentially large network, this treatment would clearly  
necessitate an exponentially large number of qubits. We 

therefore opt for a reduced strategy by encoding the vertices of 
the geometrical minor of   (a population-level structure 
obtained in analogy to dimensionality reduction [9]) into qubits. 
The respective crystal architecture may therewith be implemented 
on a register of at most 16 qubits.  

III. LORENTZ NEURAL CRYSTALS 

 Fig. 1 illustrates neural crystals classically describable via 
special Clifford-Lipschitz operations in 0

1C  and 0
1C , as well as 

their co-crystals obtained by functional duality. The structures 
feature precisely two medial layers. As is characteristic of 
Lorentz neural structures [9], there is a unique lateral layer of 
exclusively inhibitory interneurons, herein representing anti-
modalities. Overall, the graph topology illustrated in Fig. 1(a) 
(Fig. 1(c)) comprises a Lorentz, ()-partition (resp., a Lorentz, 
(1,4)-partition): any two distinct deep clusters/subpopulations of 
neurons of the same layer are necessarily disconnected. The 
graph topology illustrated in Fig. 1(b) (Fig. 1(d)) comprises a 
Lorentz, co-()-partition (resp., a Lorentz, co-(1,4)-partition): 
any two distinct deep clusters of neurons of the same layer 
induce a semicomplete subdigraph.  

Remark 1: While of special interest, Lorentz neural (co-) 
crystals are not the unique (co-)structures derivable via special 
Clifford-Lipschitz operations. Depending on values of the pair 
 p q , several other (co-)structures are obtainable. 

Remark 2: Crystals and co-crystals are coexistable on the 
same structure, the composite dynamics being sustained by 
hyper-self-duality or quantum entanglement (see Fig. 1 in [9]). 

Remark 3: For dimensionality values 2< <d , with  d
a transition from purely algebraic to quasi-spin-geometrical 
multidimensional patterns of network dynamics is expected.  

Remark 4: A distinct class of self-organizing networked 
systems of dimensionality precisely equal to 128 has been 
alluded to in [9], potentially allied to octonionic dynamics. 
Rather than subserving behaviors, such dynamics may 
neurobiologically subserve emotions or internal  states and, by 
projection, be of relevance to far more convoluted analogues in 
the artificial network sciences. 

IV. A REAL-WORLD SCENARIO 

Antagonistic interactions are a common, yet largely ignored 
hallmark of large-scale, complex networked systems under real-
world scenarios: for instance, leading causes of cancer-related 
deaths are highly heterogeneous, involving almost non-modifiable 
risk factors (socio-demographics, genetic conditions or medical 
history: modalities), as opposed to almost modifiable risk factors 
(environmental stressors, lifestyle and behavioral risk factors: 
anti-modalities), the latter being containable by appropriate 
policy-making and public health interventions [17, 18].  

Being considered a marker of socioeconomic development, 
colorectal cancer (CRC) is the second leading cause of cancer 
deaths globally, with increasing incidence rates in younger 
adults mirroring high Socio-demographic Index (SDI) [18]. A 
neural crystal of dimensionality 5d  for population-level, non-
hereditary early-onset CRC (EO-CRC) risk prediction in the 
European Union (EU) is illustrated in Fig. 2. Given this 
structure, we propose that faster convergence of network  
dynamics – assessable by means of the Cheeger constant [9] of 
the underlying digraph – is innately indicative of increased EO-  



                                                                                                 

 

Fig. 1. Lorentz neural crystals. (a, c) Spin-geometrical neural structures classically describable via special Clifford-Lipschitz operations in 0
1, 3
C  (a) and 0

1, 4
C (c). 

Either network features precisely one lateral layer of exclusively inhibitory interneurons. Under mirror supersymmetry, the structures accommodate early fusion of 
8 (a) and 16 (c) time-invariant (anti-)modalities and the crystallization of latent multidimensional patterns. (b, d) Co-structures with intra-layer connections. Black 
U-turn arrows in (d) indicate that the respective layers form semicomplete digraphs;bi , i  11 2   p q , denotes an element of a basis of 0

p qC .

CRC incidence. If true, this would further imply that in the EU, 
sporadic EO-CRC is heterogeneous rather than homogeneous. 
 Via the crystal the following patterns are recognizable: (i) 
candidate sporadic EO-CRC risk factors are strongly interrelated 
(Fig. 2(a)); (ii) the network dynamics are sustained by the self-
duality of the socio-demographic modality (Fig. 2(b)), an 
observation explaining the fact that a high SDI coarsely mirrors 
increased EO-CRC incidence; (iii) there is a distinctive role for 
modifiable risk factors (anti-modalities) in multidimensional 
network dynamics (Fig. 2(c));  (iv) modifiable risk factors  are 
themselves interrelated (Fig. 2(c)). Together, (iii) and (iv) suggest 
that policy makers may have to prioritize strategies to prevent the 
adverse interplay of modifiable risk factors in sporadic EO-CRC. 
Fig. 2(d) presents preliminary outcomes of the neural crystal’s 
implementation on a sample of four EU countries that exhibit 
significant differences in EO-CRC incidence (45-49y; both 
sexes), according to the statistics in [18]. The crystal accurately 
captures the gradient of increasing EO-CRC incidence across the 
sample, providing early evidence that the disease is at its core 
heterogeneous. 
 Remark: Explainable MMAI is worth contemplating in 
relation to other key modelling ingredients, namely data efficiency 
and human intelligence (by a human’s unique cognitive capacity 
to leverage causal domain knowledge [19]), the latter being 
ultimately the essence of human-in-the-loop models.  

V. OUTLOOK 

 Without blinding to incompleteness [20], we hope to have 
hereby offered some clues about the feasibility to confront the 
challenge of interpretability and transparency in MMAI. We 
attempted to do so by discussing structures standing at the 
cornerstone of geometric quantum computational properties 
germane to large-scale neural coding in the self-organizing brain. 
We alluded to the potential impact of our vision by a specific 

application to MMAI in healthcare, placing emphasis on an 
emerging global epidemic: EO-CRC. Future considerations 
include experimentation with multimodal big data across 
diverse contexts and model extensions to dynamic analogues – 
neural time crystals. Along these avenues, we aspire to shed 
light on ongoing debates about deep explainability, chiefly 
centered around the extent to which human and algorithmic 
thought are (in)commensurable [21, 22]. 
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