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A B S T R A C T

Background and Objective: Only about 14% of eligible EU citizens finally participate in colorectal cancer
(CRC) screening programs despite it being the third most common type of cancer worldwide. The development
of CRC risk models can enable predictions to be embedded in decision-support tools facilitating CRC screening
and treatment recommendations. This paper develops a predictive model that aids in characterizing CRC risk
groups and assessing the influence of a variety of risk factors on the population.
Methods: A CRC Bayesian Network is learnt by aggregating extensive expert knowledge and data from an
observational study and making use of structure learning algorithms to model the relations between variables.
The network is then parametrised to characterize these relations in terms of local probability distributions at
each of the nodes. It is finally used to predict the risks of developing CRC together with the uncertainty around
such predictions.
Results: A graphical CRC risk mapping tool is developed from the model and used to segment the population
into risk subgroups according to variables of interest. Furthermore, the network provides insights on the
predictive influence of modifiable risk factors such as alcohol consumption and smoking, and medical
conditions such as diabetes or hypertension linked to lifestyles that potentially have an impact on an increased
risk of developing CRC.
Conclusion: CRC is most commonly developed in older individuals. However, some modifiable behavioral
factors seem to have a strong predictive influence on its potential risk of development. Modeling these effects
facilitates identifying risk groups and targeting influential variables which are subsequently helpful in the
design of screening and treatment programs.
1. Introduction

Colorectal cancer (CRC) is the third most common type of cancer
worldwide, making up for about 10% of all cases [1] and being account-
able for around 12% of all deaths due to cancer. In 2020, there were 1.9
million new cases and 930,000 associated deaths. It is more common
in developed countries, where more than 65% of the cases are found.
Despite this, as an example, only about 14% of susceptible EU citizens
participate in screening programs, at the moment mostly based on fecal
testing and colonoscopy. Hence, there is a need for accurate, non-
invasive, cost-effective screening tests based on novel technologies and
raise further awareness of the disease and its detection. Moreover, more
personalized screening approaches are required to consider genetic
and socioeconomic variables as well as environmental stressors that
potentially lead to different onsets of the disease [2]. A particular
line of action is the development of predictive models that facilitate
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CRC predictions, the subject of this paper, possibly embedded in de-
cision support tools that aid in the advice on screening and treatment
recommendations.

The epidemiology of CRC and its most important risk factors (CR-
CRF) are discussed, among others, in Marley and Nan [3] and Sawicki
et al. [4]. These factors are defined as measurable characteristics
associated with increased CRC incidence and considered to be signif-
icant independent predictors of increased risk of the disease. They
are qualified as modifiable or not. Non-modifiable ones are factors
over which the individual has no control, including genetics, age, or
gender. In contrast, modifiable ones cover behavioral factors that can
evolve through individual action, including physical activity (PA), or
tobacco use. Most CRC development does not have a genetic burden,
but is linked to lifestyle and environmental factors [4] and thus the
identification of the impact of the modifiable factors in individuals is
key to reducing CRC incidence.
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The purpose of this paper is to provide a Bayesian network (BN)
[5,6] that facilitates the prediction of CRC risks and their mapping.
The network will be built from extensive expert judgment and data
and illustrated through two relevant use cases referring to CRC risk
mapping and CRC influential finding identification; other uses will be
sketched in the conclusion. Interest in BNs in the healthcare community
has increased over the last decade as for diagnosis and prognosis BNs
represent a natural framework to analyze dependence among risk fac-
tors. Furthermore, they can aggregate knowledge from experts, which
is especially relevant in contexts in which data might be limited, and
still provide meaningful and accurate decision support [7]. Relevant
work in the field includes Wang et al. [8], who propose a BN model
for cancer treatment assessment and development monitoring; Jang
et al. [9], who use a BN model together with expert knowledge to
analyze the disease burden of breast cancer and the risks and benefits of
radiation therapy; and Liu et al. [10] who use BNs to analyze the most
influential factors in breast cancer diagnosis. Regarding CRC, Myte
et al. [11] build a BN to analyze the possible impact of one-carbon
metabolites in relation to CRC, also considering genetic information
and environmental factors in the study; Sieswerda et al. [12] leverage
BN structure learning algorithms and expert knowledge to create causal
models to estimate treatment effectiveness in colon cancer therapies;
and Osong et al. [13] make use of BNs for predicting local tumor
recurrence in rectal cancer patients after treatment and surgery.

In contrast, the approach proposed in this paper aims to build a
representative probabilistic model of the interactions between several
variables in a general population setting, including non-modifiable and
modifiable risk factors, to analyze their influence in the development
of CRC. Major advantages of BN models, that we shall draw upon, are
their use for generative purposes and their ability to propagate the
evidence along the network to obtain representative probabilities based
on this evidence. Thus, the model built in this paper is intended to
serve as a quantitative guideline for the CRC risk assessment of different
segments of a population, as it manages to maintain representative
proportions and imbalances of the different variables found in the
data set. Hence, the conclusions reached through the model will be
representative (at least for the population set taken into account) and
actions taken could be modeled to obtain a meaningful approximation
of their influence. Furthermore, the characterization of segments of the
population with a higher risk of developing CRC would be of interest
for screening purposes as targeting these groups would yield more
cases per screening test performed and increase a screening program’s
effectiveness [14].

The rest of the paper is structured as follows. We first describe how
the BN was built taking into account the data and knowledge available;
this entails discovering the structure of the network and building the
corresponding tables of probabilities. We next deal with two important
use cases: the first one refers to building risk maps depending on
key features of individuals; the second one, refers to reporting key
factors in developing CRC. A final section summarizes results, discusses
limitations, suggests additional use cases, and sketches future work.
Importantly, for reasons outlined in this last section, we prevent from
making causal claims for our BN and just pursue predictive claims
as in Hernan and Robins [15]; Scutari and Denis [6] provide further
insights regarding causality and BNs. For reproducibility purposes,
software for the full model, as well as for the use cases presented, is
available in https://github.com/DanielCorralesAlonso/CRC_Risk_BN.

2. Materials and methods

This section describes the process used to build our BN for CRC
risk predictions. It is divided into five parts characterizing the work
pipeline adopted: collection of available knowledge, data gathering and
processing, network structure discovery, estimation of probabilities,

and validation.

2 
2.1. Materials

2.1.1. Prior available knowledge
The data used in this project were extracted from an observational

study covering annual health assessments of adult workers affiliated
with a private health insurance provider in Spain, from 2012 to 2016.
After conveniently securitizing the data, they were enriched with cen-
sus information from the Spanish National Statistics Institute (INE)
based on postal code, allowing us to infer their socioeconomic status
and educational level. This led to an initial dataset with about 2.4
million records and 66 variables.

In order to compile relevant knowledge about CRC, we performed
exhaustive searches through scientific and medical databases with the
expressions ‘causal inference and CRC’; ‘probabilistic networks, Bayesian
networks, influence diagrams and CRC’; ‘Data mining and CRC’; ‘Risk
factors and CRC’; ‘CRC epidemiology’; ‘causes of CRC’. We also queried
ChatGPT with the prompts ‘What are the risk factors in the development
of CRC’ and ‘What are the modifiable risk factors in the development
of CRC’. Additionally, relevant information from a previous network
developed concerning cardiovascular disease (CVD) risk factors [16]
was considered.

2.1.2. Available data
The list of relevant variables, together with the background informa-

tion mined, was submitted to a team of expert clinicians who, through
a consensus session, suggested to retain from the original database the
fourteen variables presented in Table 6 in Appendix. They also grouped
the variables as follows:

• Non-modifiable CRCRFs: sex, age, and socioeconomic status.
• Modifiable CRCRFs: body mass index (BMI), physical activity (PA),
sleep duration (SD), alcohol consumption, smoking profile, anxiety,
and depression.

• Medical conditions: hypertension, hypercholesterolemia, and dia-
betes.

• Target variable: presence of CRC.

An intensive exploratory data analysis focused on detecting outliers
nd misrecorded values, duplicates, and missing values.

In particular, for originally continuous unimodal approximately
ymmetrical variables around the mean, we considered the standard
ule of treating as outliers those data points whose values were fur-
her from the marginal distribution’s mean by three standard devia-
ions [17], with 230,841 data points meeting these criteria. These were
ssumed to come from measuring or recording mistakes; we removed
hem from the training phase, assuming that model performance would
ot be affected.1 As an example, the case of a patient whose record
howed that their height was 160 cm and their weight 342 kg, was
liminated. We also discarded for training purposes 325,147 data points
ith a missing value in any variable, as given the size of the final
ataset, we would have enough training data. Note that there was no
vidence suggesting any missing not at random (MNAR) scenario which
ould have prevented us from discarding these data points.2

Finally, we retained a total of 1,778,270 health assessments which
ere split according to the date of the recording with the motivation of
pdating the parameters of our model every year based on information
rom previous years and reserving those of year 2016 for validation
urposes.

Table 7 in the Appendix lists the proportion of cases in various
arginal categories reflecting, by and large, the standard structure of

he Spanish labor force. We performed this exploratory analysis for

1 Importantly, they were not used for training purposes, but we used them
or validation purposes in the sense of Section 2.2.3.

2 Again we used them for validation purposes, Section 2.2.3.

https://github.com/DanielCorralesAlonso/CRC_Risk_BN
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Fig. 1. Initial BN structure (network 1) coding knowledge available for CRC taking into account available variables. Forbidden arcs not included for clarity.
each of the years as an exploratory sensitivity analysis check, revealing
just minor differences over the years.

Similarly, we explored the impact of spatial effects based on post-
codes, finding no evidence of spatial correlations for all variables
considered except the socioeconomic situation, in which spatial infor-
mation is encoded by definition.

2.2. Methods

2.2.1. Structure discovery
Once the data was collected and processed we built a discrete BN

to estimate the underlying joint distribution, which served as the basis
to make inferences and predictions on CRC risk cases of interest. The
selected variables were coded as described by Table 6 in Appendix. A
two-stage procedure was used to learn the BN structure.

First, based on the information described in Sections 2.1.1 and 2.1.2,
specially the causal suggestions from our medical experts, we obtained
an initial description of the network describing proposed and forbidden
arcs, summarizing their knowledge, as agreed with the team of experts.
Fig. 1 provides the initial network where, to facilitate visualization, we
do not include forbidden arcs. As an example, (Hypercholesterolemia,
Age) would be a forbidden arc as the former cannot affect the latter in
any possible way. Different color codes were used for the four types of
variables mentioned above.

Such structure was used as the initial network to several structure
discovery algorithms and software. There are numerous procedures
available for the purpose of building a network based on relations in
the data summarized e.g. in [18,19], who also mention related software
solutions. In particular, we used the algorithms available in GeNIe
Modeler [20], and the Python libraries pyAgrum [21] and pgmpy [22].
The solutions arrived at with various algorithms were analyzed by
three experts in the CRC domain who revised the additional arcs
reasoning in terms of plausible predictive relationships. This process
3 
led to the final BN structure shown in Fig. 2 where new data-based
arrows are displayed in red. To specifically obtain such a network,
we employed the greedy hill-climbing algorithm, a local optimization
algorithm that maximizes a predefined score at each step and adds
an edge between nodes until the score cannot be maximized [23]. For
our network structure discovery, we used the Bayesian Dirichlet sparse
(BDs) score defined in Scutari [24] and implemented in pgmpy , as it
is argued [25] that BDs seems to provide better accuracy in structure
learning, specially with sparse data. As a consequence of the chosen
graphical representation, the underlying suggested probabilistic model
over the variables is characterized through the following expression:

𝑝(𝑣𝑠𝑒𝑥,… , 𝑣𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

=
[

𝑝(𝑣𝑠𝑒𝑥)𝑝(𝑣𝑎𝑔𝑒)𝑝(𝑣𝑆𝐸𝑆 |𝑣𝑠𝑒𝑥, 𝑣𝑎𝑔𝑒)
]

×
[

𝑝(𝑣𝑆𝐷|𝑣𝑠𝑒𝑥, 𝑣𝑎𝑔𝑒)𝑝(𝑣𝑃𝐴|𝑣𝑠𝑒𝑥, 𝑣𝑎𝑔𝑒, 𝑣𝑆𝐷, 𝑣𝑆𝐸𝑆 )𝑝(𝑣𝑑𝑒𝑝𝑟|𝑣𝑠𝑒𝑥, 𝑣𝑎𝑔𝑒, 𝑣𝑆𝐸𝑆 )

𝑝(𝑣𝑠𝑚𝑜𝑘|𝑣𝑠𝑒𝑥, 𝑣𝑎𝑔𝑒, 𝑣𝑃𝐴)𝑝(𝑣𝑎𝑙𝑐 |𝑣𝑠𝑒𝑥, 𝑣𝑎𝑔𝑒, 𝑣𝑠𝑚𝑜𝑘)

𝑝(𝑣𝐵𝑀𝐼 |𝑣𝑠𝑒𝑥, 𝑣𝑎𝑔𝑒, 𝑣𝑃𝐴, 𝑣𝑠𝑚𝑜𝑘)𝑝(𝑣𝑎𝑛𝑥|𝑣𝑠𝑒𝑥, 𝑣𝑆𝐷, 𝑣𝑠𝑚𝑜𝑘, 𝑣𝑑𝑒𝑝𝑟)
]

×
[

𝑝(𝑣ℎ𝑦𝑝𝑐ℎ𝑜𝑙|𝑣𝑠𝑒𝑥, 𝑣𝑎𝑔𝑒, 𝑣𝑃𝐴, 𝑣𝑠𝑚𝑜𝑘, 𝑣𝐵𝑀𝐼 , 𝑣𝑎𝑙𝑐 )𝑝(𝑣𝑑𝑖𝑎𝑏|𝑣𝑠𝑒𝑥, 𝑣𝑎𝑔𝑒, 𝑣𝑃𝐴, 𝑣𝐵𝑀𝐼 )

𝑝(𝑣ℎ𝑦𝑝𝑡𝑒𝑛|𝑣𝑎𝑔𝑒, 𝑣𝑃𝐴, 𝑣𝑠𝑚𝑜𝑘, 𝑣𝐵𝑀𝐼 , 𝑣𝑎𝑙𝑐 , 𝑣𝑑𝑖𝑎𝑏)
]

×

𝑝(𝑣𝐶𝑅𝐶 |𝑣𝑠𝑒𝑥, 𝑣𝑎𝑔𝑒, 𝑣𝑎𝑙𝑐 , 𝑣𝑠𝑚𝑜𝑘, 𝑣ℎ𝑦𝑝𝑐ℎ𝑜𝑙 , 𝑣ℎ𝑦𝑝𝑡𝑒𝑛, 𝑣𝑑𝑖𝑎𝑏) (1)

where, to facilitate reading and reasoning, we have separated the
products into the four blocks of variables considered.

2.2.2. Probabilities discovery
Once with the structure, the next stage was to learn the associated

probability tables drawing on the data 𝐷 available. We estimated them
using standard multinomial-Dirichlet models [23,26]. Let 𝑋 be a net-
work variable, 𝑈 its parent variables, and 𝒖 one of its instantiations. In
general, if 𝑝(𝜃 ) is a Dirichlet prior distribution with hyperparameters
𝑋|𝒖
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Fig. 2. Final BN structure (network 2) coding knowledge and data available for CRC taking into account relevant available variables and enhanced through the database.
𝛼𝑥1|𝒖,… , 𝛼𝑥𝐾 |𝒖, the posterior 𝑝(𝜃𝑋|𝒖|𝐷) will be a Dirichlet distribution
with hyperparameters 𝛼𝑥1|𝒖+𝑚[𝒖, 𝑥1],… , 𝛼𝑥𝐾 |𝒖+𝑚[𝒖, 𝑥𝐾 ], where 𝑚[𝒖, 𝑥𝑖]
is the number of times that instance (𝒖, 𝑥𝑖) appears in the dataset. In
particular, the estimate of the parameter 𝜃𝑋=𝑥𝑖|𝒖 based on the posterior
mean would be

𝜃̂𝑋=𝑥𝑖|𝒖 =
𝛼𝑥𝑖|𝒖 + 𝑚[𝒖, 𝑥𝑖]

∑

𝑖
(

𝛼𝑥𝑖|𝒖 + 𝑚[𝒖, 𝑥𝑖]
) .

A potential problem with our BN structure is that, due to the many
connections arriving at some of the nodes some of the columns in the
tables might receive relatively little data. In particular, minority classes
in highly imbalanced variables, e.g. the CRC positive class in the CRC
node, are affected by this issue. In that case, the corresponding poste-
rior distributions would essentially coincide with the priors, therefore
demanding care in assessing such priors, notwithstanding the related
problem of the large number of priors to be chosen for some of the
variables considered in the model.

Uniform priors are largely used in scenarios where no prior infor-
mation is available. One example is the prior defined for the Bayesian
Dirichlet equivalent uniform (BDeu) score [27], which assumes com-
plete ignorance about the parameters of the network and thus at
each node each class has the same probability [28,29]. In the case
of the prior for the BDs score used for structure learning, it follows
an empirical Bayes approach by giving prior uniform probability to
the classes that appear at least once in the dataset, and zero prior
probability to the classes that do not appear in the dataset [24]. Still,
in medical practice the lack of prior information is rare, and a carefully
defined informative prior may be more meaningful than a uniform one.
As a consequence, the following approach was employed to build the
priors for estimating the parameters. Table 7 in Appendix provides the
marginal empirical distributions for all variables, which we use as prior
means for the corresponding conditionals, whatever the conditioning
values are, as a means of characterizing prior knowledge. We multiply
them by a factor 𝛼 interpreted as the relative weight of the prior with
4 
respect to the data in the calculation of the posterior distribution. After
cross-validating [30,31] this parameter by trying several values in a
grid, based on classification performance (Section 2.2.3) and quality of
inference (Sections 3.1 and 3.2), 𝛼 was set to the number of patients
considered divided by 10 000, that is 𝛼 ≈ 31.69, as it entailed a
reasonable influence of the prior knowledge in the above-mentioned
cases with few data when a variable is conditioned by many others.
Other 𝛼 values were tried varying the denominator in powers of 10;
some of their multiples resulted in poorer performance, in classification
terms, in the extreme cases in which 𝛼 was too small or too large; other
intermediate candidate values resulted in more similar performance to
the 𝛼 selected. A limitation of this approach is that the parameter 𝛼 will
have a different impact on the parametrization of each variable depend-
ing on its skewness or uniformity. This has been further analyzed in the
literature, see [32,33]. However, it simplifies the prior characterization
by only determining a single free parameter.

This quantity 𝛼 will determine the uncertainty for all probability
distributions at all nodes. Then, as discussed, if there is sufficient data
for each of the combinations of conditioning variables, the uncertainty
for the distributions will be reduced and the posterior means will shift
depending on the conditioning variables. For cases with less data, the
posterior distributions will be more similar to each other but will entail
a larger uncertainty of the approximation. This process is repeated over
several years, from 2012 to 2015, using the posterior distribution of
the previous year as the prior for the next one, appraising the value of
data from previous years. As an example, Table 1 provides the prior
means for the distribution of the variable SD conditional on its two
antecessors, Age and Sex, based on the marginals in Table 7 for each of
the three categories Short (S), Normal (N), and Excessive (E), which,
as described above, coincide.

Tables 2 and 3 respectively provide the posterior conditional mean
and 0.9 posterior predictive intervals after processing the data from
year 2012. Observe that there has been a reasonable change in the
posterior conditional probability table when compared with the prior
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Table 1
Prior mean probability for SD given Sex and Age.

[24, 34] [34, 44] [44, 54] [54, 64]

Man Woman Man Woman Man Woman Man Woman

Short 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024 0.1024
Normal 0.8963 0.8963 0.8963 0.8963 0.8963 0.8963 0.8963 0.8963
Excessive 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011

Table 2
Posterior mean probability for SD given Sex and Age in 2012.

[24, 34] [34, 44] [44, 54] [54, 64]

Man Woman Man Woman Man Woman Man Woman

Short 0.0600 0.0711 0.0897 0.1039 0.1211 0.1581 0.1386 0.2256
Normal 0.9384 0.9264 0.9092 0.8952 0.8778 0.8407 0.8604 0.7737
Excessive 0.0016 0.0025 0.0011 0.0009 0.0012 0.0012 0.0010 0.0007

table, effectively addressing the differences among the states and the
conditional states of the variables considered.
Table 4 provides the evolution of the SD probability distribution for a
man in the age range [24, 34] after processing the data from years 2012
o 2015, displaying the mean and the 0.9 posterior predictive intervals
or each year. The aforementioned change in the posterior probabilities
s more subtle after 2012 as the prior information of the previous years
as already informative. Nevertheless, this approach is able to detect

ubtle changes in the distribution over the years which can be highly
seful in certain contexts.

The proposed method seeks to address the aforementioned problem
elated to the priors through the implementation of informative and
epresentative priors, which in the cases where none or few data are
ollected avoids assessing uniform probabilities to combinations of
ariables that are so rare that might not even appear in the data.

uniform probability prior in this scenario would represent exactly
he opposite of what we infer from the data as would characterize
hese combinations of variables with around a probability of 1∕𝑘 (for
-valued categorical variables) in the conditional distributions of the
odel, resulting in a poor and misleading probability assessment. By

cknowledging these situations, we reduce the uncertainty surround-
ng the less frequent values and we shall better characterize the risk
ssessments to be performed.

.2.3. Validation through classification
Once the model has been built, and before illustrating relevant use

ases in Sections 3.1 and 3.2, a core issue is to validate it. A natural way
o do it in a probabilistic setting, see e.g. [30,31,34], is to conceive the
etwork as a classifier and assess its performance over various nodes
ith a number of classification metrics. We undertook extensively this
pproach suggesting good results.

Let us illustrate the process with two variables, CRC and Diabetes.
n the first case, we set CRC as the target variable that we would like
o classify using the available instances for 2016, and those related to
utliers and missing values. Note that the problem we are dealing with
n this case is a highly imbalanced problem (1:1500 approx) which
ntails a major challenge for classifiers [35]. As an example, using the
N built, we classify the data set for the 2016 patients and aim to
aximize the G-mean, the root of the product between sensitivity and

pecificity [36]. Recall that the major interest will be to detect as many
RC positives as possible without falsely classifying CRC negatives
s positives. Table 5a presents the confusion matrix achieved in the
lassification of the whole data set, achieving a sensitivity of 0.68 and
specificity of 0.72. The corresponding AUC score is 0.76, which,

ncidentally, surpasses the values reported by other CRC studies with
imilar datasets, population imbalance characteristics, and calibration
esults [37]. In the case of diabetes, the classification problem is
uch less imbalanced (1:30). Table 5b provides the confusion matrix

chieved, with a sensitivity of 0.73 and a specificity of 0.76.
 0

5 
Besides the usual classification metrics, we paid special attention
o their calibration, in line with recent discussions in the medical
iterature [38]. This is of vital importance in risk prediction models as it
as a great impact on the usefulness of these decision-support aspects.
ig. 3 displays the calibration curves obtained through quantile binning
or the cases of Diabetes and CRC over the relevant ranges for both
iseases.3 Quantile binning [39] creates bins with an equal number of
amples based on the distribution of the data instead of bins with equal
idth. Thus, the number of predictions is larger on the lower end of the
istribution in the cases of imbalanced data and fewer predictions are
ade on the upper end of the distribution. The resulting curves suggest
good calibration with a slight tendency to overestimate in the final

elevant bins.

. Results

.1. Use case: CRC risk mapping

Once the BN has been built, parametrised, and validated, we pro-
eed to exploit some of its properties and functionalities. The first
se case for our model is the production of risk maps or tables that
eflect the risk of a person suffering CRC assuming certain conditions

(e.g., this person is a man who is a smoker) as other features 𝑏
ary (e.g., his age and drinking status) of interest. The motivation
ehind this use case is the well-evidenced assumption that different
onditions have non-identical CRC effects in distinct segments of the
opulation [3]. Furthermore, eventual tendencies could be broadly
haracterized through the use of risk maps.

The basic ingredient for the design of this tool would be the proba-
ilities 𝑝(𝐶𝑅𝐶|𝑐, 𝑏, 𝑞) of a person having CRC given that it has features
and 𝑐, as 𝑏 adopts values in a set 𝐵, when 𝑞 are the parameter

alues adopted for the probability tables, which are computed from
he BN model with standard Bayesian computations [26]. To facilitate
nterpretation, we perform a comparison against the baseline of not
aving the information 𝑏, computing the differences in log probabilities

(𝑏, 𝑞) = log(𝑝(CRC|𝑐, 𝑏, 𝑞)) − log(𝑝(CRC|𝑐, 𝑞)),

nd display graphically such quantities as a function of 𝑏. Recall though
hat we have uncertainty about 𝑞 and thus we have to reflect it, for
xample through an interval 𝑖(𝑏) = [𝑙𝑟(𝑏, 𝑞), 𝑢𝑟(𝑏, 𝑞)] of high posterior
redictive probability for 𝑟(𝑏, 𝑞). For that, an iterative sampling ap-
roach is followed to generate posterior predictive estimates for the
robabilities of interest. The uncertainty is then reflected through
he, e.g., 0.9 posterior predictive interval of the desired quantity and,
ssentially, we would declare that if:

• 0 ∈ 𝑖(𝑏) there is no sufficient evidence for an increase in risk with
respect to the baseline;

• 0 < 𝑙𝑟(𝑏, 𝑞), there is an increase in risk; and, finally,
• 0 > 𝑢𝑟(𝑏, 𝑞) there is a reduction in risk.

After several design and visualization tests, we decided to display
he risk maps as follows:

• Condition 𝑏 would refer to one or two criteria, leading to uni- or
bi-dimensional risk maps.

• We use 𝑟(𝑏, 𝑞) as reference for graphical purposes, where 𝑞 is the
posterior mean of 𝑞, but additionally include 𝑖(𝑏).

• A color scheme based on 𝑟(𝑏, 𝑞) is used and displayed together
with the whole interval 𝑖(𝑏). We avoid colors typically used in
risk matrices [40] (red, yellow, green) to mitigate cultural biases.

• The size of the representation associated with the variation of
risk in the segment 𝑏 should reflect the size of the corresponding
population.

3 The empirical marginal of diabetes in 2016 is 0.0336 and that of CRC is
.00064.
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Table 3
0.9 posterior predictive interval for SD probability given Sex and Age after processing 2012 data.

[24, 34] [34, 44] [44, 54] [54, 64]

Man Woman Man Woman Man Woman Man Woman

S [.0583, .0617] [.0686, .0737] [.0881, .0914] [.1013, .1064] [.1189, .1232] [.1543, .1619] [.1347, .1425] [.2175, .2338]
N [.9367, .9401] [.9238, .929] [.9076, .9108] [.8926, .8978] [.8756, .88] [.8369, .8445] [.8565, .8643] [.7654, .7818]
E [.0013, .0019] [.002, .003] [.0009, .0013] [.0007, .0012] [.0009, .0014] [.0008, .0015] [.0007, .0014] [.0003, .0013]
Table 4
Evolution of the SD probability distribution for a man in the age range [24–34] over years 2012–2015.

Prior 2012 2013 2014 2015

Short .1024 .0600 [.0583, .0617] .0600 [.0581, .0613] .0595 [.0579, .0612] .0608 [.0591, .0626]
Normal .8963 .9384 [.9367, .9401] .9388 [.9372, .9404] .9389 [.9373, .9406] .9378 [.9360, .9396]
Excessive .0011 .0016 [.0013, .0019] .0015 [.0013, .0018] .0015 [.0013, .0018] .0013 [.0011, .0016]
Fig. 3. Calibration curves for diabetes and CRC.
Table 5
Confusion Tables for BN validation.

(a) CRC confusion table (b) Diabetes confusion table

Pred. label Pred. label

0 1 0 1

True label 0 𝟐𝟒𝟑 𝟑𝟐𝟔 96 163 True label 0 𝟐𝟒𝟗 𝟗𝟑𝟕 78 361
1 70 𝟏𝟒𝟖 1 3118 𝟖𝟐𝟗𝟏

Fig. 4. Risk map for sleep duration (SD) for 𝑤𝑜𝑚𝑒𝑛.

We provide now several examples of risk maps based on the previ-
ous guidelines.

Example 1. The first example, Fig. 4, provides a risk map when 𝑐 =
woman, taking into account 𝑏 = (SD) reflected in the 𝑥-axis, that is,
we want to display the CRC risk variation depending on the sleep
duration (short, normal, excessive) in women. Therefore, the reference
probabilities are 𝑝(CRC|𝑤𝑜𝑚𝑎𝑛, SD, 𝑞).

In this case, shorter sleep duration seems to be related to an increase
in CRC risk as shown by the point-wise estimations reflected in the
colors and the first quantity in each of the cells. However, the interval
estimates do not confirm this finding as 0 belongs to all the 0.9 posterior
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predictive intervals. Therefore, we would conclude that SD is not a
variable that fundamentally increases the risk of CRC on its own.
Observe that the normal SD group is the largest one, followed by a
smaller group with shorter SD. Note also that the smaller the population
group, the larger the uncertainty as shown by the lower and upper
bounds of the reported 0.9 posterior predictive intervals. ▵

Example 2. Fig. 5 provides a risk map when 𝑐 = 𝑚𝑎𝑛, taking
into account that 𝑏 = (Age,BMI ) with 𝑎𝑔𝑒 varying in the 𝑥-axis and
𝐵𝑀𝐼 in the 𝑦-axis. Thus, the reference probabilities are 𝑝(CRC|𝑚𝑎𝑛,
(𝐴𝑔𝑒,BMI ), 𝑞).

Observe that CRC risk increases as both BMI and Age increase.
However, age is the variable that has a larger impact, as colors are
more similar column-than row-wise. We state that there is a smaller
risk of CRC development with respect to the baseline for patients with
ages lower than 44 and a bigger risk for patients older than 54.

In turn, Fig. 6 provides a risk map for 𝑐 = 𝑚𝑎𝑛 taking into account
𝑏 = (BMI , 𝐴𝑙𝑐𝑜ℎ𝑜𝑙) with BMI in 𝑥-axis and 𝐴𝑙𝑐𝑜ℎ𝑜𝑙 in 𝑦-axis, with
reference probabilities defined through 𝑝(CRC|𝑚𝑎𝑛, (BMI , 𝐴𝑙𝑐𝑜ℎ𝑜𝑙), 𝑞).

In this case, higher alcohol consumption always induces an in-
creased CRC risk which accentuates greatly with age. Moreover, alcohol
consumption seems to influence CRC risk more than BMI. ▵

3.2. Use case: influential findings

Risk maps provide visual comparisons of population groups in terms
of different risk factors. An additional useful approach to the analysis
of the factors potentially affecting the development of CRC would be to
examine the variables that had the largest impact on patients diagnosed
with CRC. In line with Section 3.1 and earlier work in determining
influential findings in BNs, e.g. [41], we propose an approach to char-
acterize the predictive power of each class and variable in the network.
In our analysis, the variables will be modified independently among all
the possible values for each risk factor and the difference in risk will be
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Fig. 5. Risk map for 𝐴𝑔𝑒 and BMI for 𝑚𝑒𝑛.
Fig. 6. Risk map for BMI and 𝑎𝑙𝑐𝑜ℎ𝑜𝑙 for 𝑚𝑒𝑛.
assessed. Repeating this with all CRC-positive patients in the database,
we obtain an estimation of the strength of the predictive influence for
each of the risk factors. As mentioned in the introduction, it is im-
portant, though, to remark that the influence of the variables depends
on the model’s graphical structure, and any causality claim should be
carefully analyzed before taking it for granted, see our final discussion.
This prevents us from employing standard causal evaluations of effect
sizes through interventions/do-calculus or counterfactuals.

In detail, we proceed as follows, where Algorithm 1 summarizes the
method used. First, the entire information of each CRC-positive patient
is recovered from the database. The order of the evidence available for
a patient is randomized and set variable by variable. At each step, the
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relative risk variation is calculated, which is quantified as the relative
change in the difference of logarithms of the mean probabilities of
developing CRC conditioned on the added evidence, similarly to the
approach in Section 3.1. That is,

𝑅𝑅𝑉 (𝑖, 𝑗) =
log(𝑝𝑚𝑜𝑑𝑒𝑙(CRC|𝑒𝑣𝑗 )) − 𝑙𝑜𝑔(𝑝𝑚𝑜𝑑𝑒𝑙(CRC|𝑒𝑣𝑗−1))

𝑙𝑜𝑔(𝑝𝑚𝑜𝑑𝑒𝑙(CRC|𝑒𝑣𝑗−1))
× 100,

where 𝑅𝑅𝑉 (𝑖, 𝑗) refers to the relative risk variation for patient 𝑖 and
variable 𝑗, and 𝑒𝑣𝑗 represents the values of the first 𝑗 conditioning
variables.

The reason for randomizing the evidence is that, when the evidence
of the parents of the target node is fully set, the remaining variables
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have no effect on the target node as the entire probability distribution
is determined by the parents of such node, due to the local Markov
property [23]. Thus, the order in which the evidence is set may have
an impact on how certain variables seem to influence the prediction
on the model target. Recording the relative variations in probability
corresponding to the set of new evidence for each variable will assess
the relative impact of the variable instance in the determination of the
final probability. Randomizing the order of the evidence and repeating
the process several times would provide a better understanding of the
predictive influence of all the variables on the target node.
Algorithm 1: Pseudo code to determine influential findings

Data: Dataset, model, target
Result: diff_vect
for n iterations do

for row in rowsDataset do
evidence = Dataset[row,:] #Take variable information as
evidence.

𝑝model(target|evidence)
shuffled_evid = random.shuffle(evidence)
for 𝑗 ← 1 to len(shuffled_evid) do

partial_evid = Dataset[row, shuffled_evid[0:j-1]]
new_evid = Dataset[row, shuffled_evid[j]]
relative_risk_variation[row, j] =
log(𝑝model(target|partial_evid+new_evid))−log(𝑝model(target|partial_evid))

log(𝑝model(target|partial_evid))
× 100

end
end
Average along the data set rows

end
Average along all iterations

Fig. 7 reflects an average of the positive and negative predictive
influence that different variables have on the risk of developing CRC.
The standard deviations of the predictions are also provided. Our
conclusions seem to agree with GBD 2019 Colorectal Cancer Collab-
orators [42] and Marley and Nan [3], which state that countries in
Western Europe are prone to an increased consumption of alcohol
and tobacco that highly contributes to CRC DALYs (Disability Adjusted
Life Years). Furthermore, high fasting plasma glucose is one of the
major contributors to CRC DALYs in Western European women and our
analysis coincides with this by showing how diabetes is one of the main
influential factors in the development of CRC. Although not modifiable,
age is certainly the most significant factor influencing the risk of
developing CRC as about 90% of the new cases occur in individuals
over 50 years old [4]. Moreover, a larger BMI seems to affect also the
risk of developing CRC.

The influence of smoking in our model is interesting as it would
seem that it is better to be a smoker than to quit tobacco and become
an ex-smoker. This appears to be related to the fact that the effects of
smoking on CRC are mainly observed in the long run. People tend to be
smokers when they are young and quit tobacco when they become older
or are diagnosed with some condition for which tobacco is known to be
a risk factor. Furthermore, as we are in the context of an observational
study, we cannot discard the possibility that heavy smokers may have
died earlier due to other conditions not recorded in the study. Thus,
it is being an ex-smoker that would determine the risk of smoking in
this case. However, further analysis would have to be done to reach a
definitive conclusion.

Similar studies could also be performed using just certain segments
of the CRC-positive population, which could target more precisely the
influence of relevant factors in a specific group.

4. Discussion

The proposed BN associates relevant medical conditions and CR-
CRFs in relation to CRC. We used expert opinion to get its initial
8 
Fig. 7. Ranking of influential variables.

structure and an extensive database to update and complement it, from
which we also built its conditional probability tables, with uncertainty
in the beliefs acknowledged through posterior distributions.

We illustrated its use to provide risk maps and uncover CRC influ-
ential variables. But there are other relevant medical use cases which
we briefly sketch:

• As mentioned, we had access to individuals’ postcodes. This en-
ables displaying geographical risk maps similar to those of Sec-
tion 3.1 with the whole country as baseline and cells representing,
say, provinces and their population size.

• Another important use is the classification of individuals, which
we sketched in Section 2.2.3 for validation purposes, facilitating
classifying an individual as more likely than not to have CRC.
Should a different utility function be available, we would assign
individuals to the class with maximum expected utility.

• In turn, and similarly, we could use the BN to segment a popu-
lation based on posterior CRC probabilities or posterior expected
utilities, given certain features, say for screening purposes, as we
shall do in future work.

• A further important application of the network is for synthetic
data generation purposes when available data are proprietary and
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we need to share the data with a related organization [43]; this
is easily achieved by sampling from the model defined in (1).

• A collateral use of our BN would be to generate interesting
medical hypothesis. As an example, Tables 2 and 3 show how
sleep duration is affected by age, as older people seem to sleep
for shorter periods than younger people. There also seems to
be a significant gap between men and women in terms of sleep
duration being women the ones that sleep less, with this gap
accentuated with age.

Our discussion in Section 2.2.2 about the prior chosen reflected
he important dynamical aspect of updating the initial prior through
he data over various years. This is of interest as the model can
e easily updated to consider the most recent data acquired by the
ealth insurance provider in order to be used again for risk assessment
urposes with up-to-date information.

In future work, we shall incorporate this predictive model into the
arger decision-support picture related to coherently advising screening
ethods. For this, we would need to consider the possible overall

mpact of the medical conditions using decision variables and utility
unctions. A decision-making problem will be defined for which the
oal would be to find the portfolio of screening recommendations with
aximum expected utility in line with precision vs current one-size-

its-all based on age approaches to screening [2]. Such model would
acilitate the design of incentives to promote the adoption of CRC
creening mechanisms and overcome current low adoption rates.

We conclude by pointing out several limitations of this study. First,
he exploratory analysis described in Table 7 suggests a labor structure
ost probably different to that in other countries meaning that this
odel would either have to be adapted to the population structure

n those countries or be used with some care taking into account
his fact; yet the broad pipeline described would be reproducible.
econd, some of the data were self-reported; however any possible
ault was mitigated by several quality control strategies as described
n [44]. Third, we had no data available concerning diet, genetics, and
ut microbiome data; BMI, diabetes, and hypercholesterolemia might
artly account for diet information, but this would be a confounding
ariable; concerning genetics, Marley and Nan [3] claim that about
5% of the CRC development risk is due to genes positively or neg-
tively influencing patients. Very importantly, as mentioned above,
he absence of the above three factors would prevent from causality
laims in this study. Note though, again as discussed above, that we
ould anyway conclude predictive claims in the sense of Hernan and
obins [15], much as we did above in relation to sleeping duration.
inally, also hinted above, although we have updated the model over
he years, it would also be of interest to consider the case of a dynamic
N framework to model disease evolution over time. This approach
ould aid also in extricating some cause–effect relationships between

he variables.
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able 6
ourteen variables in the model.
Variable Definition Levels

𝑣𝑠𝑒𝑥 Sex {female, male}
𝑣𝑎𝑔𝑒 Age (24,34], (34,44], (44,54], (54,64]
𝑣𝑆𝐸𝑆 Socioeconomic status {1,2,3}

𝑣𝐵𝑀𝐼 Body mass index {underw., normal, overw., obese}
𝑣𝑃𝐴 Physical activity {insufficiently active (1), sufficiently active (2)}
𝑣𝑆𝐷 Sleep duration {short, normal, excessive}
𝑣𝑎𝑙𝑐 Alcohol consumption {low, high}
𝑣𝑠𝑚𝑜𝑘 Smoker profile {non-smoker, ex-smoker, smoker}
𝑣𝑎𝑛𝑥 Anxiety {yes, no}
𝑣𝑑𝑒𝑝 Depression {yes, no}

𝑣ℎ𝑦𝑝𝑡𝑒𝑛 Hypertension {yes, no}
𝑣ℎ𝑦𝑝𝑐ℎ𝑜𝑙 Hypercholesterolemia {yes, no}
𝑣𝑑𝑖𝑎𝑏 Diabetes {yes, no}

𝑣𝐶𝑅𝐶 Colorectal cancer {yes, no}
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Appendix. Data used

Table 6 provides the states of the fourteen variables used and how
they are coded.

We briefly discuss how key variables were categorized. Age was
divided into four groups ((24,34], (34,44], (44,54], and (54,64]), using
the INE National Sport Habits survey coding, as in [44]. The socioe-
conomic status, originally a continuous variable, was discretized in
three levels by binning its values using specified quantiles based on the
variable’s mean and standard deviation, with a larger index indicating
a higher socioeconomic level.

Concerning BMI, we used the four WHO classes: underweight (<
18.5 kg/m2), normal weight ([18.5, 25) kg/m2), overweight ([25, 30)
kg/m2), and obese (≥ 30 kg/m2). Participants’ leisure-time PA levels
were assessed as in [16], distinguishing between patients not meeting
WHO minimum recommendations for aerobic PA in adults (insufficiently
active) and meeting them (regularly active). SD was categorized as short
less than 6 h), normal (6-9 h), and excessive (> 9 h). The smoker profile

reflected whether the patient was an active smoker, had never smoked,
or was an ex-smoker. We also extracted whether the patient had anxiety
or depression.

Concerning medical conditions, we used the following criteria: di-
betes, medicated for it or glycemia ≥125 mg/dL; hypercholesterolemia,
edicated for it or LDL ≥130 mg∕dL, HDL ≤ 40 mg∕dL, triglycerides
150 mg∕dL or total cholesterol ≥200 mg/dL; hypertension, medicated

for it or systolic/diastolic blood pressure ≥139/90 mm Hg.
Table 7 describes the full dataset distribution over all the years.

With the exception of the lower presence of females, due to the la-
bor sectors served by the incumbent health insurance provider, the
structure and its health status seem by and large representative of the
Spanish labor market. A healthy worker effect [45] might explain some
of the somewhat lower estimates (anxiety, depression, diabetes).
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Table 7
Percentage of observations at each class for variables in the model.

Variable States Marginal Variable States Marginal

Sex Female 30.68% Physical Act. 1 47.21%
Male 69.32% 2 52.79%

Age(y) (24, 34] 21.21% Anxiety Yes 2.70%
(34, 44] 38.02% No 97.30%
(44, 54] 29.03%
(54, 64] 11.73% Sleep Dur. <6h 10.88%

(6 h–9 h) 89.01%
Socioeconomic 1 23.93% >9 h 0.11%
status 2 61.97%

3 14.10% Depression Yes 0.47%
No 99.53%

BMI Underweight 1.10%
Normal 41.27% Diabetes Yes 3.63%
Overweight 40.67% No 96.37%
Obese 16.96%

Hypertension Yes 15.05%
Smoker Non-Smoker 49.90% No 84.95%
profile Ex-Smoker 30.16%

Smoker 19.94% Hypercholest. Yes 51.32%
No 48.68%

Alcohol Low 95.05%
High 4.95% CRC Yes 0.07%

No 99.93%
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