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ABSTRACT: This article reviews the revolutionary impact of emerging technologies and
artificial intelligence (AI) in reshaping modern healthcare systems, with a particular focus on
the implementation of mobile diagnostic clinics. It presents an insightful analysis of the current
healthcare challenges, including the shortage of healthcare workers, financial constraints, and
the limitations of traditional clinics in continual patient monitoring. The concept of “Mobile
Diagnostic Clinics” is introduced as a transformative approach where healthcare delivery is
made accessible through the incorporation of advanced technologies. This approach is a
response to the impending shortfall of medical professionals and the financial and operational
burdens conventional clinics face. The proposed mobile diagnostic clinics utilize digital health
tools and AI to provide a wide range of services, from everyday screenings to diagnosis and
continual monitoring, facilitating remote and personalized care. The article delves into the
potential of nanotechnology in diagnostics, AI’s role in enhancing predictive analytics,
diagnostic accuracy, and the customization of care. Furthermore, the article discusses the
importance of continual, noninvasive monitoring technologies for early disease detection and the role of clinical decision support
systems (CDSSs) in personalizing treatment guidance. It also addresses the challenges and ethical concerns of implementing these
advanced technologies, including data privacy, integration with existing healthcare infrastructure, and the need for transparent and
bias-free AI systems.
KEYWORDS: healthcare, clinics, sensors, wearable, diagnosis, remote management, real-time, continual monitoring

■ OVERVIEW OF CURRENT HEALTHCARE SYSTEMS
The role of diagnostic clinics as cornerstones in modern
healthcare systems is unquestionable. Whether operating as
separate diagnostic centers or as sections within a hospital,
these entities have become the first point of contact for
patients seeking medical care that covers a broad range of
services, from regular medical check-ups and tests to more
complicated emergency procedures.1 Nevertheless, diagnostic
clinics are not without some considerable drawbacks. The
dependence on experienced medical practitioners for clinical
decision-making generates a bottleneck in patient treatment,
restricting the number of patients that can be attended to at
any given time. The World Health Organization (WHO)
projects that by 2030, there will be a deficiency of 18 million
health workers, which, paired with the current substantial
dearth of healthcare workers, could lead to longer wait times
for appointments, thus compromising the quality of care.2 This
predicament is further accentuated in developing countries
where the ratio of healthcare workers to patients is already
abysmal. As an example, Africa, which bears 24% of the global
disease burden, has access to only 3% of healthcare workers.3−5

The existing diagnostic healthcare model faces a daunting
financial challenge. Significant sums of money must be invested
in clinics to pay for necessary medical devices and equipment,
as well as operational and managerial expenses. The global
medical device market in 2020 was worth $456.9 billion and is

expected to experience a significant increase.6 Unfortunately,
many diagnostic clinics are unable to provide a lasting solution
to their patients’ medical issues or advance their diagnosis or
treatment, even though a considerable amount of funds has
been invested. The absence of persistent monitoring ability in
the conventional clinical model further exacerbates the
difficulties. Regular diagnostic clinics are often just a single
visit and lack continual assessment of a patient’s health
condition, which can lead to missed early diagnosis of diseases.
Conventional diagnostic clinics need to be revolutionized to

keep up with societal and financial demands while incorporat-
ing technological advances. An innovative healthcare platform
that is easily accessible to patients is needed, serving as their
first point of contact with the healthcare system, while
incorporating portable and miniaturized diagnostic and
screening devices. This platform would reduce the burden on
the overwhelmed healthcare systems by regulating the influx of
patients to central healthcare providers.7,8 Acting as a “gate”,
this platform would give a preliminary indication of a person’s
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medical state, helping to determine whether a person should
seek expert medical attention. This would also aid in the effort
for early detection of pathologies, an essential parameter in
mitigating premature death.9

■ THE NEED FOR CONTINUAL MONITORING
As the demand for early disease detection and management
grows, it is crucial to incorporate continual monitoring
solutions within diagnostic clinics. Noninvasive methods of
collecting health data form the foundation of these solutions,
enabling the seamless tracking of a patient’s health status over
time. These innovative approaches are critical in fulfilling the
industry’s goal for continuous health monitoring, especially in
the early stages of disease development. Continual monitoring
surpasses traditional periodic assessments by utilizing point-of-
care testing and other forms of intermittent sampling
technologies. By adjusting the frequency of these tests to
match the disease’s progression rate, it is possible to create a
robust and effective continual monitoring environment. This
strategy ensures a dynamic and responsive approach to patient
care, keeping a close eye on disease evolution even between
physical check-ups. The availability and accessibility of
advanced diagnostic technologies are central to making this
vision a reality.
Decentralizing diagnostic processes give patients the

flexibility to undergo necessary tests outside the confines of
hospitals or large medical centers, reducing the initial barriers
to essential health evaluations. Integrating continual monitor-
ing into the patient care continuum significantly enhances the
capacity for early disease detection. Early diagnosis is a crucial
step in improving patient outcomes and can substantially
alleviate the strain on healthcare systems by minimizing the
need for extensive screening procedures. In the context of
cancer, where early detection is vital, shifting toward
continuous monitoring and early diagnostics could result in
substantial financial savings, estimated at $26 billion annually
in the United States alone.10−12 Emphasizing the screening of
asymptomatic individuals stands as the most effective strategy
for early disease identification, underscoring the critical role of
diagnostic clinics in achieving this goal. Therefore, incorporat-
ing continual monitoring solutions within diagnostic clinics is
vital to addressing the growing need for early disease detection
and management.

■ FROM TRADITIONAL TO MOBILE: THE
EVOLUTION OF DIAGNOSTICS THROUGH
TECHNOLOGY

The opportunities that exist through the use of emerging
technologies, such as nanotechnology, artificial intelligence
(AI), wearable devices, and point-of-care (POC) testings, are
awe-inspiring in their capacity to shape the future of
healthcare. Through their synergistic application, these
technologies open unprecedented possibilities, from more
precise, individualized care to improved early detection of
diseases to enhanced therapeutics.
Nanotechnology can alter the future of healthcare by

manipulating matter at the atomic or molecular level, resulting
in heightened sensitivity of diagnostic instruments such as
nanosensors, which can detect biomarkers at incredibly low
concentrations.13 AI has brought forth the potential to reshape
healthcare decisions through its data analysis and predictive
modeling prowess. Subsets of AI, such as machine learning

(ML) algorithms, can scan through large amounts of patient
data, recognizing patterns that would otherwise go undetected
by the human eye. Its applications have helped to increase
diagnostic accuracy, predict prognosis, and formulate person-
alized treatment plans, along with telemedicine enabled by
wearable devices and remote monitoring tools.14−17 Accenture
reports that AI’s implementation could result in savings of up
to $150 billion for the U.S. healthcare system by 2026.18

Additionally, POC testing devices, portable imaging equip-
ment, and lab-on-a-chip systems have brought diagnostics
closer to home, even for the most rural locations, and have
been influential in advancing personalized treatments and
prosthetics, due to the emergence of 3D printing in
medicine.19,20 Examples include the creation of hearing
aids,21 dental implants,22 and a range of medical equipment.
The merging of these technologies presents the opportunity

to revolutionize the healthcare service industry, enabling swift
and precise diagnosis which will be realized through real-time
data analysis from portable devices and nanosensors powered
by AI. The potential of these cutting-edge technologies
promises to deliver care that is both effective and available
to all. In the future of smart, miniaturized healthcare facilities,
made possible by AI, nanotechnology, and other technologies,
issues such as accessibility, affordability, and continual
monitoring could be adequately addressed.

■ MOBILE DIAGNOSTIC CLINICS�A CONCEPT
Building on the transformative potential of AI,23−25 nano-
technology,26,27 and portable diagnostic tools,28,29 “Mobile
Diagnostic Clinics (MDCs)”�a state of concept�represent a
transformative innovation in healthcare, leveraging emerging
technologies to bring advanced diagnostic capabilities directly
to patients. By enabling real-time data analysis and leveraging
minimally invasive sensors, MDCs extend the benefits of these
sophisticated technologies beyond traditional healthcare
settings. This mobile approach ensures that high-quality
diagnostic services are widely available, addressing critical
issues of accessibility, affordability, and the need for continual
health monitoring. In doing so, MDCs represent a pivotal shift
toward a new era of healthcare that is both effective and
accessible to all.
The design of miniaturized healthcare facilities will increase

patient access to healthcare, generally featuring technologies of
a much smaller size than regular clinics, making it feasible to
implement MDCs in various locations such as community
centers, offices, and malls. Access to these facilities helps realize
the vision of continually tracking a person’s health and alerting
them of any anomalies that occur�overcoming accessibility
restrictions inherent in traditional clinics. Using wearable
gadgets and other remote patient monitoring equipment, these
clinics will be able to monitor patient health metrics
continually, from afar, allowing for early diagnosis of diseases
and prompt interventions. Through AI and other technologies,
smart clinics can decrease operational costs, mainly in the long
run, making them cost-effective.30 This eliminates the need for
a multitude of medical personnel for tedious tasks, such as
appointment scheduling and data logging, as a considerable
number of these can be automated. Moreover, remote
consultations will drastically reduce patient expenses, such as
travel fees. By providing preliminary diagnoses remotely, time
and location obstacles for patients significantly decrease.
Essential components of these miniaturized healthcare

facilities are digital health tools and systems fueled by AI.
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AI-enabled instruments permit a broad spectrum of services,
from everyday screenings to diagnosis, therapeutic advices, and
continual monitoring of patient health, which allows for
personalized care delivery.31 Machine learning algorithms
examine copious amounts of patient data, discovering
underlying patterns and developing an understanding of
patients’ health. This initial understanding can pave the way
for customized treatment plans, provided by healthcare
professionals based on the acquired data. Integrating nano-
technology makes it possible to create ultrasensitive nano-
sensors that can detect various health markers and signs of
disease in their earliest stages. Not only is this process
noninvasive, but it is also usually comfortable for the patient.
These devices are often cheaper than their gold-standard
diagnostic counterparts. Therefore, these technologies can be
manufactured and distributed in remote locations, where
buying and training people to use gold-standard, expensive
devices is not feasible while also realizing the goal of
noninvasive, continual patient monitoring. Furthermore, with
the help of portable imaging machines and lab-on-a-chip
systems, even complex diagnostic procedures can be performed
away from traditional healthcare facilities, ensuring fast,
precise, and available results, no matter where the patient
may be. This takes us one massive step closer to the goal of
personalized healthcare.
In an era dominated by AI, the evolution of healthcare

through MDCs marks a significant transformation in the
delivery of medical services. By integrating emerging
technologies, MDCs are poised to revolutionize access to
comprehensive, noninvasive health evaluations, diagnoses, and
ongoing condition monitoring. This approach does not merely
rely on multifunctional devices but emphasizes the importance
of utilizing individual devices, each specialized in its function.
The integration and data analysis across these devices are
orchestrated by AI, providing powerful clinical decision
support. This strategy leverages the precision and f lexibility
of these specialized tools, enabling AI to compile and interpret
data for a holistic understanding of patient health.
Consequently, this shift is expected to democratize healthcare,
making it more effective, personalized, and accessible to a
broader audience. The fusion of these advanced technologies
within MDCs heralds a future where healthcare is seamlessly
integrated into our lives, offering tailored and continual
medical support that transcends traditional care models
(Figure 1).

■ TECHNOLOGICAL ADVANCES FOR MOBILE
DIAGNOSTIC CLINICS

Upon access to an emergency or healthcare facility, patients
must undergo a series of preliminary checkups followed by
more specific testing to establish a diagnosis and deciding on a
treatment plan. The general workflow consists of (1) vital sign
monitoring, (2) chemical workups, and (3) imaging. Below is
an overview of the technologies that have been devised to aid
in the incorporation of clinical diagnostics into a MDC
workflow.
Vital Sign Monitoring. It is already relatively easy for

patients to monitor vital signs in the absence of a healthcare
professional, in the comforts of their own homes, and as part of
their daily routines. This capability is credited to the
development of various small-scale sensors and portable
solutions that allow for the monitoring of heart rate, blood
pressure (BP), temperature, and respiratory rate.32 Oxygen

saturation is also frequently used in the assessment of a
patient’s state.33 The major difference between nonwearable
and wearable vital sign monitoring devices lies in the sampling
frequency. While wearable devices achieve continuous
monitoring, nonwearable devices are usually restricted to
intermittent time points.34

Portable (Non-Wearable) Devices. Most of the traditional
methods for monitoring vital signs are already compatible with
the MDC platform as they are small-scale and portable.
Heart rate can be monitored either manually, or extracted

from acquired Electrocardiogram (ECG) signals. ECGs are
recorded by placing three or more electrodes on the skin at
predetermined locations. Devices such as KardiaMobile
(AliveCor, Mountain View, CA) have emerged as Portable
ECG Monitors. These gadgets collect medical-grade ECG
readings that can be easily shared with healthcare professionals
for a more thorough evaluation (Figure 2A). By facilitating the
prompt discovery and supervision of heart issues, such as
congenital heart disease and atrial fibrillation, these devices can
assist in avoiding significant health complications.35,36

A photoplethysmogram (PPG) is obtained by measuring the
changes in peripheral blood volume using an optical technique.
A photodetector is placed on a patient’s fingertip or earlobe,
while light is transmitted to the skin to obtain a signal.33 Blood
volume fluctuations, as a reflection of cardiac activity, influence
the absorption profile of the transmitted light.37 Blood oxygen
saturation can be derived from PPGs.38

BP can be measured either using a simple sphygmoman-
ometer, a device consisting of an inflatable cuff and a pressure
gauge or with an ambulatory blood pressure (ABP) monitoring
device. Common sphygmomanometers are portable, easy to
use, and inexpensive, while ABPs are relatively more costly.
More sophisticated sphygmomanometers integrate with a
mobile app to display and classify recordings.39 Kurylyak et
al. demonstrated that cuff-less continuous BP can be derived

Figure 1. Mobile diagnostic clinics�A concept. Created with
BioRender.com.
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Figure 2. Summary of data collection devices and emerging technologies. (A) A platform to integrate smart device electrocardiogram into clinical
practice. Reprinted (in part) with permission from Lambert et al. Reference36. Copyright 2021 Elsevier. (B) (a) Textile-based activity and ECG
monitoring platform with a (b) mobile user interface. Reprinted (adapted) with permission from Tao et al. Ref 49. Copyright 2018 John Wiley and
Sons. (C) (Top) MinION portable DNA sequencer. Reprinted with permission from Mongan et al. Ref 65. Copyright 2020 Springer Nature.
(Bottom) Full-length read of dsDNA through the nanopore sequencer. (a) Steps in the translocation of the DNA through the nanopore. Each
section of DNA is depicted by a different color (b) Raw current traces corresponding to the steps (i−viii) in (a). Each section generates a unique
current trace corresponding to decipher base sequence. Reprinted (in part) with permission from Jain et al. Ref 68. Copyright 2016 BioMed
Central. (D) Continuous Glucose Monitoring (CGM) Devices. (a) Finger pricking device. (b) Schematic of CGM devices. (c) Detection
principles of Glucose sensors. Reprinted with permission from Kumar Das et al. Ref 72. Copyright 2022 The Electrochemical Society. (E)
Bimetallic nanocatalysts in nanoporous hydrogels for CGM via contact lens. (a) In vivo CGM of smart contact lens in diabetic rabbits (scale bar:
150 μm) (b) Correlation equation between blood and tear glucose levels using a CGM with a glucometer (green), a commercial CGM (blue) and
the smart contact lens (pink) for 30 min. Reprinted (in part) with permission from Kim et al. Ref 73. Copyright 2022 John Wiley and Sons. (F)
Illustration of lateral flow immunoassay for detection of thyroid-stimulating hormone (TSH). Reprinted with permission from Choi et al. Ref 88.
Copyright 2017 Elsevier. (G) (a) Bioadhesive ultrasound for continuous imaging. (b) Comparison of image resolutions and monitoring durations.
Reprinted (in part) with permission from Wang et al. Ref 91. Copyright 2022 The American Association for the Advancement of Science. (H) (a)
Pictor Plus hand-held fundus camera. Reprinted from https://www.volk.com/pages/portable-fundus-cameras. Copyright 2024 Volk Optical. (b)
Diagnosis of Diabetic Retinopathy by hand-held fundus camera. Reprinted (in part) with permission from Lu et al. Ref 99. Copyright 2022 PLoS.

ACS Sensors pubs.acs.org/acssensors Review

https://doi.org/10.1021/acssensors.4c00636
ACS Sens. 2024, 9, 2777−2792

2780

https://pubs.acs.org/doi/10.1021/acssensors.4c00636?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.4c00636?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssensors.4c00636?fig=fig2&ref=pdf
https://www.volk.com/pages/portable-fundus-cameras
https://pubs.acs.org/doi/10.1021/acssensors.4c00636?fig=fig2&ref=pdf
pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.4c00636?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


from the acquired PPG signals using an artificial neural
network.40

Respiration rate is often monitored by manually counting
the number of breaths a patient takes within a given time.41

This method is inaccurate and as such several automatic
devices have been developed. These include portable
respiratory monitors such as the Capnostream 35 (Medtronic,
Minneapolis, MN).42 Respiration rate can also be extracted
from PPG signals.43

Wearable Devices.Wearable technologies are embarking on
a revolutionary path, moving from simply trendy accessories to
essential partners in health surveillance and disease manage-
ment. Today’s modern smartwatches, fitness trackers, and
custom-built health sensors have been developed to monitor a
range of health metrics. With the capacity to provide
immediate, invaluable data, these devices enhance health
outcomes and foster a personalized approach to healthcare.
Smartwatches and Fitness Trackers, such as the Apple Watch
(Apple, Cupertino, CA), Fitbit (Fitbit LLC, San Francisco,
CA), and Garmin (Garmin Ltd., Olathe, KS), initially used for
monitoring physical activity and sleep patterns, have extended
their features. These devices continuously monitor important
parameters like heart rate and blood pressure, pushing the
notion of wellness tracking to an even higher level. Addition-
ally, versions like the Apple Watch Series 4 have taken health
tracking to a greater degree with the inclusion of ECG
functions.44,45 Such advancements can warn users of any
atypical heart rhythms that may signify severe ailments like
atrial fibrillation, thereby playing a key role in early recognition
and intervention.
For those with diabetes, wearable technologies have brought

about innovative solutions like Continuous Glucose Monitor-
ing (CGM) systems, including the FreeStyle Libre system
(Abbott Diabetes Care, Inc., Alameda, CA). These wearables
offer instantaneous glucose level readings, patterns, and
warnings, simplifying diabetes management and eliminating
the necessity of frequent finger-prick blood tests.46 Sleep
Monitoring Devices are also gaining popularity in the wearable
tech industry. Devices such as Fitbit Sense can record a variety
of sleep health metrics, comprising total sleep time, sleep
stages, and oxygen saturation levels.47 The knowledge obtained
from this data can spotlight problems like sleep apnea, enabling
users to intervene promptly and improve their sleep quality.
Additionally, these devices can be used to determine
respiration rates.41

An extra step into wearable technologies has been taken by
innovation in the field of Smart Clothing. With embedded
sensors and flexible printed circuit boards and electrodes, these
cutting-edge garments monitor multiple health and fitness
parameters. For instance, Linz et al. developed an ECG
monitor embedded into a commercially available, tight-fitting
T-shirt.48 Tao et al. developed a washable, three-textile-
electrode system for the recording of ECG, temperature, and
respiration rate (Figure 2B).49 The unification of these
instances illustrates how wearable devices are altering health-
care. They have already begun delivering real-time health data,
a trend that is only predicted to become more substantial with
future technological advances.
Chemical Workups. Point-of-Care Testing (POCT)

Devices. The concept of POCT devices is transforming the
medical diagnostics industry. These devices deliver laboratory-
grade diagnostics directly to the patients, provide rapid,
accurate, and convenient testing for various health conditions,

and generate instantaneous results that help healthcare
professionals make quick, informed decisions and expedite
diagnosis and treatment. Here are a few examples of POCT
devices: Blood Glucose Meters, such as the Accu-Chek Guide
Me (Roche Diabetes Care, Inc., Switzerland), Bionime GM
110 (Bionime, Malaysia), and the Freestyle Libre, provide
people with diabetes the power to monitor and manage their
condition more efficiently.46,50 The CoaguChek XS System
(Roche Diagnostics, Basel, Switzerland) is a hand-held device
that enables patients on long-term anticoagulant therapies, like
warfarin, to test their International Normalized Ratio levels in
the comfort of their home, minimizing the need for frequent
visits to the clinic and enabling timely changes to medication
dosages.51 Cardiovascular Markers Testing is further improved
with the PATHFAST (Polymedco, LLC, NY), a multiassay
diagnostic system that can quickly detect conditions such as
acute myocardial infarction and congestive heart failure,
facilitating faster patient care decisions.52,53 Infectious Disease
Testing has taken a giant leap with the GeneXpert System
(Cepheid, Sunnyvale, CA), a device capable of performing
rapid molecular tests for various diseases, including tuber-
culosis, HIV, and influenza strains, in under 2 h.19,54,55

Portable Hematology Analyzers, like the HemoCue Hb 201+
and 301 (HemoCue AB, Ängelholm, Sweden) systems, can
carry out rapid and reliable hemoglobin tests to help diagnose
anemia, particularly useful in rural locations.56 Their portability
is especially useful in resource-limited settings, where access to
comprehensive laboratory services may be restricted. Respira-
tory Monitors, such as the SpiroScout SP (Ganshorn Medizin
Electronic, Niederlauer, Germany), use U/S technology to
measure lung function accurately.57 This noninvasive, portable
device delivers instant results, making it a valuable tool for
people with chronic respiratory diseases, like chronic
obstructive pulmonary disease and asthma. With instant
diagnostics at the patient’s location, these devices improve
patient outcomes and significantly boost healthcare systems’
efficiency.

Microfluidics and Lab-on-a-Chip (LOC) Systems. Micro-
fluidics and LOC systems signify a fantastic breakthrough in
the realm of diagnostics and biomedical research. These
advanced technologies enable the manipulation of microliter-
scale volumes of fluids, yielding lightweight and highly effective
diagnostic solutions. One of the applications of this technology
is Compact Immunoanalyzers; these devices draw on the
power of microfluidics and LOC technology to carry out
complete blood tests, liver function analyses, and immuno-
assays with merely a drop of blood.58 Devices such as
PATHFAST have also been tested in an ICU setting for the
assessment of presepsin concentration, a diagnostic marker in
sepsis.58,59 Such devices bring accurate results in under 20 min,
simultaneously analyzing multiple samples and requiring only
100 μL sample volumes, completely transforming POC
diagnostics and therapeutic decision-making.
Another breakthrough technology is Portable Bioanalyzers,

which use LOC systems to conduct electrophoresis on a credit-
card-sized chip. Providing qualitative and quantitative analysis
of DNA, RNA, and proteins in just half an hour, these
analyzers present a dependable and much quicker alternative to
traditional, lengthy gel electrophoresis methods.60 Enabled by
microfluidics, Hand-held Blood Analyzers can perform a
variety of tests, from blood gases and chemistries to
coagulation and cardiac markers, all while offering lab-level
results in mere minutes, facilitating timely treatment
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decisions.61−63 Moreover, high-throughput Polymerase Chain
Reaction (PCR) systems represent ground-breaking progress
in this domain. Thanks to microfluidic technology, these
systems execute gene expression analysis, genotyping, and
digital PCR on one chip, permitting the simultaneous handling
of multiple samples and assays while guaranteeing accuracy
and scalability in genetic analysis.64 Additionally, portable
DNA analyzers allow for quick DNA testing on the go. By
integrating microfluidic and nanopore technology, these
systems can detect infectious diseases, pharmacogenetic
conditions, and even waterborne pathogens within an
hour.65−67 Currently, the most renowned DNA analyzer is
the MinION (Oxford Nanopore Technologies, Oxford, U.K.)
(Figure 2C).68 Lastly, compact chemistry analyzers represent
miniature devices that can perform a broad range of
biochemical tests, delivering results in minutes.69 Owing to
their condensed size and user-friendly interface, they capture
the concept of POC testing, potentially making diagnostics
available anywhere. These instances demonstrate the bound-
less potential of microfluidics and LOC systems in speeding
up, increasing access to, and optimizing diagnostics. The
ultimate promise of these technologies lies in the possibility of
delivering advanced diagnostic capabilities to underserved
regions, promoting healthcare equity and accessibility. This is
entirely compatible with the idea of MDCs, driving us closer to
a future where every individual has access to quality healthcare,
no matter their location.

Nanotechnology-based Devices. Nanotechnology is a
driving force in revolutionizing healthcare, signaling the
emergence of precision medicine. The utilization of nano-
technology to produce nanosensors gives the potential to
identify disease biomarkers in their early stages. This has
brought forth a new period of exact, individualized medical
care. Several noteworthy nanotechnology applications bolster
this idea: Nanobiosensors, the pacesetters of nanodiagnostics,
use nanotechnology to detect biomarkers, such as DNA/RNA
fragments, proteins, and organic molecules.13,70 The working
principles of these sensors include mechanical nanocantilever-
based, magnetic, electrochemical, and optical.71 Local physio-
logical phenomena can be monitored using electrochemical-
based single-analyte sensors, e.g., continuous glucose monitors
(Figure 2D, E)72,73 and millimeter to centimeter-scale
platforms that sense O2, H2, and CO2,

74 as well as
triethylamine and ammonia.75 Additionally, the functionaliza-
tion of gold nanoparticles with single-stranded DNA fragments
has been utilized for the detection of biomarkers and
prognostic indicators for a variety of cancers.71 These include
breast cancer indicators such as HER2, and BRCA1 fragments
that have been developed with subzeptomolar detection
limits.76−78 This could likely detect diseases such as cancer
even before any visible signs appear, as detection is in the
nanogram/mL scale, thereby increasing the chances of
successful treatment.79

Dopamine detection, applied in the diagnosis of Parkinson’s,
Huntington’s, and schizophrenia, has reached detection limits
in the nmol/L scale in human serum using gold nanoparticle-
based sensors.80−82 Multiple studies have focused on
dopamine detection using carbon-based, graphene oxide, and
carbon nanotubes, with micromolar-scale sensitivity in
urine.83,84 Additionally, nanodiagnostics can increase the
accuracy and swiftness of diagnostic tests through the passive
uptake of nanoparticle imaging agents.85

Magnetic nanoparticles, specifically iron oxide-based nano-
particles, can upgrade imaging modalities such as Magnetic
Resonance Imaging (MRI), forming highly detailed pictures
for early diagnosis of diseases.86 This can be especially useful if
portable imaging modalities have lower resolution than their
gold-standard counterparts. Nanoparticle-based lateral flow
assays, for example, can rapidly and accurately detect diseases
and hormonal discrepancies (Figure 2F).87−89

By challenging the confines of diagnostics, nanotechnology-
based tools play an important role in achieving miniature,
sophisticated diagnostic tools. The thorough, personalized
attention these devices can provide perfectly aligns with the
principal goal of improving healthcare access and ameliorating
treatment outcomes for all.
Imaging. The recent advances in imaging technology have

brought about an incredible transformation in the realm of
diagnostic medicine. Portable and miniaturized devices like
ultrasound (U/S) and MRI systems, now widely available, offer
immediate, on-site diagnoses, which are particularly helpful in
remote locations or emergency cases.20,90

U/S machines have been revolutionized thanks to the
incorporation of novel U/S-on-chip technologies (Figure
2G).91−93 These point-of-care ultrasound (POCUS) devices
include modern designs such as the Butterfly iQ (Butterfly
Network, Inc., Guilford, CT) and Lumify (Philips, Amsterdam,
Netherlands). Compatible with smartphones and tablets,
POCUS devices allow healthcare professionals to get good
resolution U/S images whenever necessary, and their
applications extend far beyond emergency medicine and
general practice to encompass rural healthcare and even
disaster relief. Such devices are often supplemented with AI to
determine and enhance image quality while also classifying the
image.93 Additionally, piezoelectric-based wearable U/S
patches have been developed with axial resolutions that allows
for the detection of subcentimeter scale cysts in the breast,94

and even 48 h of continuous imaging of integral organs.91

Portable MRI Systems usually refer to low-field scanners
(0.25−1T) designed to decrease manufacturing costs and
increase access to devices.95,96 By continuing to address issues
surrounding hardware and signal-to-noise ratio, portable MRI
systems are on their way to being comparable with
conventional MRI systems.95,97 For example, Swoop (Hyper-
fine, Guilford, CT)�a portable MRI system that is
substantially smaller and lighter than its traditional counter-
parts and thus�allows for more flexible scanning of patients.
With no need for a Faraday cage, the portable device can be
wheeled right to the bedside for rapid diagnosis and treatment.
This device successfully detected brain abnormalities in 97% of
patients imaged while admitted to neuroscience intensive care
units.98

The Pictor Plus Portable Ophthalmic Camera (Volk Optical
Inc., Mentor, OH) has made it easier to capture high-
resolution images of the retina for the diagnosis of conditions
like diabetic retinopathy99 and glaucoma,100 particularly in
locations where more sophisticated equipment is unavailable
(Figure 2H).101,102 Additionally, Portable X-ray Devices, such
as the HF120/60HPPWV PowerPlus (MinXray, Northbrook,
IL), are now accessible to field hospitals, sports medicine, and
veterinary practice, as they are highly portable, lightweight, and
robust.103,104 An AI-driven image interpretation system has
also been developed to complement the device use. In a study
conducted in remote populations in Nigeria, an ultraportable
X-ray device was used along with the AI interpretation to
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screen patients for tuberculosis.105 This approach saved 50% of
the screenings needed for a correct diagnosis when compared
to screening all symptomatic individuals.
Overall, portable imaging devices have proven to be

indispensable in providing quick and local diagnoses, as well
as offering better access to healthcare in remote or urgent
cases. As time goes on, these tools are expected to continue
making a significant contribution to improving patient care.

■ VARYING CLINICAL DECISIONS AND DATA
ACCESS

Advanced Decision-Making Frameworks for Person-
alized Guidance. When acquiring medical data from a
remote location, it is crucial to have self-sustaining decision-
making systems that can analyze and interpret collected data.
This is necessary to reduce the burden on healthcare systems.
These systems should be capable of classifying whether a
patient is at risk, determining the time frame, and suggesting
whether they should seek out further medical attention from a
healthcare provider.
Clinical Decision Support Systems (CDSSs) have existed

since the 1970s, aiming to enhance medical decision-making
through the use of general healthcare information, including
patient data and clinical knowledge.106,107 Precision medicine
aims to incorporate patient-specific medical data into clinical
decision-making models to make patient-specific decisions.108

Without advanced CDSSs, such tasks are all but impossible.
CDSSs can be divided into knowledge and nonknowledge-

based systems.109 While knowledge-based CDSSs are pro-
grammed to adhere to established medical knowledge,
nonknowledge-based systems use AI or pattern recognition
to guide clinical decisions.107 Both frameworks can be applied
for personalized treatment guidance. CDSSs can perform
administrative tasks and calculations of financial implications as
well as inform diagnostic decisions, dose management, patient-
drug matching, treatment plan optimization, etc.110−112 IBM’s
Watson Assistant is an example of a general, natural language
processing-based CDSS that integrates diagnostic capabilities
into the clinical workflow, having learned the medical
literature.113,114 Multiple pathology-specific systems have
shown promise in aiding clinicians with diagnostic tasks in
the fields of cardiology,115 dentistry,116 and endocrinology.117

As such, CDSSs not only speed up the clinical decision-making
pipeline, relieving clinicians from dealing with certain “basic”
decision-making tasks but have the potential to improve the
quality of care by up to 5.8%.118 Additionally, CDSSs can
ensure the integration of historical and real-time patient data
for personalized decision-making.

Telemedicine and Remote Monitoring Tools. The world of
healthcare is undergoing an exciting revolution with the
emergence of telemedicine and remote monitoring solutions.
These technologies are paving the way for every person to have
access to quality care, transcending the geographical and
temporal constraints that previously prevented access to critical
care. Through real-time diagnosis, tracking, and management
of patients from afar, medical expertise is now made remotely
available to patients.
The beating heart of this transformation is Remote Patient

Monitoring (RPM) Systems. RPM involves collecting data
from a patient and wirelessly transmitting it a healthcare
professional in another location.119 Of its numerous advan-
tages, RPM enables continual monitoring of patients and real-
time detection of diseases, leading to a potential reduction in

the deterioration of illnesses and premature deaths.120 RPM
programs can be employed by clinicians on several patient
categories and are especially useful for patients suffering from
chronic illnesses, such as diabetes, asthma, and cystic fibrosis,
and neurological disorders, such as Parkinson’s disease and
epilepsy.121−123 For example, a randomized control trial using
a smartphone application for remote symptom monitoring for
cystic fibrosis patients found a shorter time to detect disease
exacerbation in the monitored group compared to the control
(Figure 3A).122 In a 3-year study of pregnant women with type

1 diabetes to assess glycemic control while undergoing
treatment, a telemedicine intervention involving daily treat-
ment modification via a telephone call from a physician after
examination of remotely acquired blood glucose levels showed
statistically significant improvement in glycemic control for the
study group that received the telemedicine intervention.124,125

These programs can allow patients to maintain certain
elements of their daily lives while feeling secure in the
knowledge that if their health deteriorates, a healthcare
professional would be able to respond promptly.
The next step in this process is incorporating Virtual

Consultation Platforms. These offer patients a personal
consultation services with healthcare professionals who can
be contacted via video conferencing or messaging. While there
are some reservations as to the success of such consultation
platforms due in large part to internet access and the chance of
not picking up nonverbal cues, with the travel requirement
removed, individuals living in remote areas or with mobility
issues can access healthcare services easily.126,127 On top of
that, Mobile Health Applications serve as personal health
assistants, allowing patients to manage appointments, view
medical records, connect with healthcare professionals, and get
personalized health tips.128,129 To add to the medical expertise
of these platforms, AI-Based Diagnostic Tools are also
included. Using AI to analyze patient data, these tools can

Figure 3. Empowering healthcare providers with RPM. (A) Time to
detection of cystic fibrosis exacerbation using an application for
symptom reporting. Reprinted with permission from Wood et al. Ref
122. Copyright 2019 Elsevier. (B) Workflow diagram of COVID-19
rpm. Reprinted with permission from Tabacof et al. Ref 140.
Copyright 2021 Mary Ann Liebert, Inc. (C) Wearable Remote Patient
Monitoring Device for the Early Detection of Patient Deterioration.
Red lines indicate high-risk warnings while the terminal black line
indicates the time of actual clinical deterioration. Reprinted with
permission from Itelman et al. Ref 141. Copyright 2022 JMIR
Publications Inc.
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act as virtual consultants, assisting healthcare professionals in
making speedy and accurate decisions in more complex
cases.130

By uniting telemedicine and remote monitoring into
healthcare delivery, the walls of traditional clinics are expanded
to reach the patient, no matter their location.

Remote Access and Management of Patient Data for
Healthcare Providers. Advancing technologies that continu-
ously collect patient data in a noninvasive fashion requires
cloud-based data access architectures that will enable health-
care providers to access the collected data remotely. This is
essential in ensuring the continuity of care and collaborative
partnerships among medical providers and is especially
relevant in remote areas where medical professionals are
unable to attend to patients physically. However, if appropriate
access to collected data is provided, a high level of care for
patients can still be maintained.131

The Health Level 7 (HL7) organization has incrementally
developed standards for the exchange, sharing, and retrieval of
electronic health records (EHRs) since 1987.132 The Fast
Healthcare Interoperability Resources standard, published by
HL7, is now widely accepted as the standard for healthcare
data exchange framework built from modular components that
can be assembled and used as part of mobile applications,
communication with servers, and EHR sharing.133 These
standards are essential in ensuring interoperability and
widespread understanding of patient data. Multiple remote
access systems have been built to comply with standards set by
HL7.134,135

Mobile phones and tablets can be used for computation,
data processing, and transfer of collected data, as well as for
communication.136,137 Their widespread availability has drawn
attention to mobile health (mHealth) under the electronic
health (eHealth) and telemedicine umbrella. mHealth is useful
in providing easy access to patient data in an efficient and time-
conscious manner, allowing healthcare professionals to be
more effective in clinical practice.138 Accessible patient data
reduces information loss, shortens intervention times, allows
for earlier detection of new health developments, reduces
unnecessary testing and consultations, and promotes more
effective decision-making, improving the overall standard of
care even remotely.139

Empowering Healthcare Providers in Remote Patient
Monitoring and Attention. Other than providing multiple
benefits to patients, RPMs can serve as a load reduction tool
for overwhelmed healthcare systems. For example, at the
height of the COVID-19 pandemic in 2020, Mount Sinai
Health System in New York launched an RPM program to
provide care to symptomatic patients (Figure 3B).140 The
program’s workflow allowed all symptomatic individuals
tracked their symptoms and were subject to weekly video
calls with a healthcare provider, while at-risk patients received
close monitoring via a pulse oximeter and video calls with a
physician. This allowed physicians to attend to high-risk
patients efficiently.
Integrating RPM programs into existing healthcare frame-

works, and providing patients with access to a range of
diagnostic tools needed for the tracking of health parameters in
MDCs, will ensure that healthcare providers keep their finger
on the pulse regarding the latest changes in patient health
status. This remote access to data will enable timely clinical
intervention prior to patient deterioration (Figure 3C).141 It
should be noted that such programs should be subjected to

continual evaluation of their value to guarantee that the quality
of care remains consistently good.
Artificial Intelligence (AI). AI has begun to, and will

continue to, revolutionize healthcare. From the analysis of
EHRs to scanning and deep learning model analysis of
radiology or pathology images and classification of skin cancer
with heightened accuracy and expediency (Figure 4A),

personalized patient-treatment matching and dose optimiza-
tion for diabetic patients (Figure 4B), and automation of
appointment scheduling, AI capabilities are permeating the
healthcare industry.15,17,142 The following instances illustrate
AI’s transformative power in the healthcare sector.
AI-powered predictive analytics holds immense potential. AI

algorithms can comb through large data sets, decipher patterns,
and anticipate patient results, assisting healthcare practitioners
in deciding on the most appropriate treatment options and
preventive actions. For example, Yala et al. developed a deep
learning-based model that assesses the breast cancer risk level
of a patient by analyzing their full-field mammogram.14 The
model achieved an AUC of 0.70, slightly higher than
conventional risk prediction models. BioMind Technology
(Beijing, China) has developed a U-NET-based model that
successfully predicted early hematoma enlargement in patients
with intracerebral hemorrhage, achieving sensitivity and
specificity of 89.3% and 77.8%, respectively.143 These successes
can help ensure timely clinical intervention.
AI is used in the diagnosis domain, where models aid

clinicians in determining illnesses by rapidly inspecting medical
images, pathology slides, and genomics with incredible
accuracy. For instance, Rajpurkar et al. developed a convolu-
tional neural network that can analyze chest X-rays and classify
them into 14 different pathologies.144 The model’s perform-
ance level was on par with or better than experienced
radiologists for 11 of the 14 tested pathologies. Esteva et al.
developed a skin cancer classification model that outperformed
board-certified dermatologists when classifying images of
lesions into treat or not classes.15 The model achieved an
AUC of 0.96 when classifying carcinomas. These models can
save valuable clinician time while not compromising on
diagnosis accuracy. This is particularly important when
imaging is conducted remotely, away from experienced
clinicians, as images can still be interpreted to a high level.

Figure 4. Implementing AI for real-time data assessment. (A) Skin
cancer classification performance of a deep neural network and
dermatologists. An AUC of 0.94 was achieved. Reprinted with
permission from Esteva et al. Ref 15. Copyright 2017 Springer Nature.
(B) Insulin dose optimization using an automated artificial
intelligence-based decision support system (AI-DSS) in youths with
type 1 diabetes. Filled circles represent the AI-DSS arm and the open
diamonds represent the physician arm. Reprinted with permission
from Nimri et al. Ref 17. Copyright 2020 Springer Nature.
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Another crucial application of AI lies in the form of virtual
health assistants, driven forward by the advances in natural
language processing. Text-based assistants have achieved
commercial success but are limited to specific inputs for
greater success rates.145 These AI-enabled assistants aid in
patient healthcare by providing reminders to take medication,
and as such, increasing medication adherence,146−148 monitor-
ing symptoms, and offering health-related advice.130,149 AI can
also analyze patient questions and direct them toward the
correct healthcare resources, making professional healthcare
guidance as attainable as making a phone call.150,151

Implementing AI for Real-Time Data Assessment. While
certain AI-based tools have shown better accuracy than
experienced physicians in disease classification tasks, real-
time analysis of the collected data is essential for continuous
monitoring devices.152,153 Real-time analysis of collected data
is currently one of the most prominent bottlenecks in the field
of healthcare big data.154 Reddy et al. simplified how AI can be
used in healthcare systems by defining four fields: admin-
istrative tasks, CDSSs, patient monitoring, and clinician
intervention.155 Each of these fields requires an understanding
of the role AI could play and how relevant loads can be taken
off healthcare providers while not only maintaining but
improving the standard of care.
Currently, AI is used as a feature of CDSSs rather than as the

sole decision-maker.156 Using AI for real-time data analysis
collected by patient monitoring devices will aid in timely
intervention, positively affecting clinical outcomes while also
narrowing healthcare disparities between affluent and impov-
erished countries.153 However, the implementation of such
systems is not yet widespread. In a study examining the use of
AI-assisted CDSSs in the context of infectious diseases, 40% of
systems were implemented in intensive care.157 In comparison,
only 5% were used in the primary care setting, emphasizing the
implementation gaps in the clinical workflow.
Several “black-box” algorithms, such as artificial neural

networks, are used to analyze healthcare data. Yet, in the
context of healthcare, for AI to be widely accepted and
implemented, it must be “explainable”�the pathway to
decisions or classifications of models must be traceable.
Primarily, this would allow healthcare providers to understand
the decisions being made, aiding the widespread implementa-
tion of AI in healthcare settings.158

■ IMPLICATIONS AND CHALLENGES
As with any emerging technology, there is a pressing need to
discuss the potential pitfalls of advances before major resources
are invested in their development and deployment.
A Harmonious Merging of Mobile Diagnostic Clinics

into Patients’ Everyday Lives for Improved Accessibility
and Comfort. Any device or platform that requires significant
adjustments in the patient’s lifestyle or comfort level is more
likely not to be utilized by the patient. Therefore, MDCs must
be implemented in easily accessible locations for patients, such
as community centers and malls. Devices incorporated as part
of MDCs should be chosen carefully, prioritizing accessibility
and adherence. Specifically, wearable devices must be
comfortable, aesthetic, durable, easy to use, and exhibit health
benefits to ensure high patient compliance. These implemen-
tation considerations require the selection of biocompatible
materials for the skin-device interface. This is especially
important in the design of the device’s electronics. Fabrication

of stretchable and flexible electronics is a potential solution to
question surrounding the comfort of devices.
Generally, material-based stretchable electronics have two

components: an elastomer backbone and an electronic filler.159

The electronic filler is either metal- or carbon-based nanoma-
terial, including carbon nanotubes, carbon black, and
graphene,160−164 or polymer-based conductors such as
PEDOT:PSS165 and DPP-based polymers.166 The elastomer
backbone can be chosen from a range of synthetic polymers
such as polydimethylsiloxane (PDMS), polyethylene (PE), and
poly(methyl methacrylate) (PMMA).167−170 This flexible
backbone provides comfort for the wearer, increasing the
device’s suitability for everyday use.
On the patient end, the integration of MDCs must be as

seamless as possible. Patients should still feel cared for,
respected, and not isolated, in addition to still receiving
treatment that is at least on par with, if not better than, frontal,
physician-only attention.
Ethical aspects and data privacy worries. As health

tech begins to realize the vision of MDCs, which will inevitably
require distributing personal health data through cloud-assisted
computing systems, understandable concerns arise involving
medical data privacy and security. Data security involves
measures that protect from unauthorized access, while
healthcare data privacy involves regulations and technologies
employed to protect sensitive patient medical records and
protected health information (PHI).171 Data privacy aims to
ensure that PHI remains accessible to healthcare professionals
yet protected from ill-intentioned third parties and hackers.
For example, in the US, the Health Insurance Portability and
Accountability Act (HIPAA) of 1996 details national standards
to protect patient health records and ensure they are not
shared without the patient’s consent.172 Additional guidelines
were published by the US National Institute of Standards and
Technology (NIST).173 HIPAA is mirrored by the General
Data Protection Regulation (GDPR) (Regulation (EU) 2016/
679) in the European Union (EU) and the Data Protection
Act in the UK, a supplement to the GDPR.174,175 Any medical
device, healthcare provider, or company that deals with PHI
must process and transmit the data it collects in compliance
with these standards.
In a report published by the U.S. Department of Health and

Human Services Office for Civil Rights detailing HIPAA
breaches, it was estimated that 64,180 breaches affected
approximately 37.5 million individuals in 2021.176 In 2022, it
was estimated that 71.4% of medical record breaches were a
result of hacking or IT incidents.177 As RPM platforms are
conceptualized, and as such, more medical data about patients
is collected, the dangers and potential to cause serious harm
will continue to increase, creating not only financial losses for
healthcare organizations through inevitable class action
lawsuits and breach rectification but potentially serious health
implications.
Multiple approaches to handling PHI have been proposed

and are being utilized by healthcare providers and health tech
companies. These approaches aim to combat breaches in both
the data security and privacy planes. The main technologies
used are authentication, encryption, data masking, access
control, and monitoring and auditing.171,178−189 Additionally,
methods for ensuring data privacy involve deidentification,
hybrid execution models, and identity-based anonymization.190

Specifically, the blockchain, as detailed by Nakamoto,191 offers
a potential solution to secure information transfer and access
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by providing a digitized, public, and distributed ledger.
Multiple blockchain-based healthcare-oriented systems have
been proposed, many utilizing smart contracts to automate
data transaction protocols.192−196 All transactions of data are
recorded, timestamped, and stored as a new block, which is
appended to the existing blockchain, while the transaction is
simultaneously verified and approved by all other users. As
such, there is a detailed, public, and decentralized record of all
parties with access to any patient record. By ensuring the
secure transfer of files and storing pointers to the location of
stored data in a decentralized database, patients can remain in
control of their medical data while still providing a framework
for real-time monitoring and clinical decision-making.197

While AI is revolutionizing healthcare, it is not without its
issues�which will need to be addressed. According to studies,
the prediction accuracy of ML algorithms varies by gender,
race, and socioeconomic factors, magnifying preexisting
biases.198−200 Additionally, AI-enabled systems are a “technical
black box” in nature, which inhibit complete transparency of
how clinical decisions are made. While progress is being made
on the interpretability of ML algorithms, an opaque nature to
how algorithms “decide” still exists, especially in the context of
deep-learning-based neural networks. Explainable AI (XAI)
refers to attempts at increasing AI decision-making trans-
parency, which is especially important in the clinical setting.201

By providing explanations for classification outcomes, XAI can
help increase trust in clinical decision-making models and
deem them just and ethical. XAI is also essential to comply
with the GDPR, which states that “a data subject [has the
right]...to obtain an explanation of the decision reached.”175,202

Implementation Problems in Healthcare Systems
and Regulatory Frameworks. Implementing new medical
procedures and technologies in the healthcare sector is a
notoriously challenging task. Effective implementation of a
novel device or concept requires a systematic, stepwise
approach supported by evidence and analysis of the innovation
while ensuring sustainable user growth and continuous
evaluation of processes.203 Moreover, achieving widespread
acceptance is difficult, especially in a field overflowing with
contributors with different ideologies. As such, implementation
processes must be detailed and mapped in advance, yet
dynamic, to adjust for feedback from end-point users and
medical caregivers alike.
Furthermore, regulatory frameworks are not universal and

require market-differential solutions, which can complicate the
global implementation and integration of medical devices into
national healthcare systems. The Food and Drug Association
(FDA) oversees the regulatory framework in the US, while
devices deployed in the European Economic Area (EEA)
require the undergoing of conformity assessment by notified
bodies designated by EU countries under the European
Medical Device Regulation (EU MDR).204 While EEA
legislation, in force since 2018, has bridged certain regulatory
differences between the E.U. and the U.S., some different
regulatory standards still hinder global implementation.
Medical devices in the U.S. and E.U. are categorized

according to risk level. These classifications determine the
certification a device must have to be approved for use.
Regardless of class, all devices must comply with general safety
and performance standards, documentation, and postmarket
surveillance. Generally, the higher the device class, the more
stringent the regulatory proceedings. In the U.S., wearable
devices require submission of either a 510(k), de novo, or

premarket approval (PMA).205 These submissions necessitate
either safety and efficacy comparisons to a predicate device, in
the case of a 510(k) submission, or PMA or de novo if no
predicate exists. Under the EU MDR, noninvasive, wearable
devices with a measurement function are assigned “Class Im”
as they pose low/medium risk.204 Such devices require
regulation through a notified body before affixation of the
CE marking and market approval.
The regulatory differences between markets make a universal

approach to MDCs challenging. As such, the setup of MDCs
between regions will likely be differently impacted by
governing body regulations and existing healthcare frame-
works.

Assuring Compatibility and Integration with Existing
Healthcare Infrastructure. Healthcare systems have been
molded into their current form for hundreds of years. For
MDCs to be implemented, they must be able to sufficiently
integrate within the setup of existing healthcare systems
without completely shattering the existing mold.
Healthcare providers, specifically physicians, must still have

access to patient data, allowing them to intervene in clinical
decision-making when necessary. Practitioners must feel
comfortable relinquishing parts of their clinical decision-
making responsibilities to AI-assisted systems. This transition
of responsibility will come through extensive testing of
proposed models in clinical settings as clinical support systems,
with the hope that through proof of exceptional performance,
clinicians will feel comfortable trusting their capabilities.
Dealing with Probable Confinements and Perils

Affiliated with Mobile Diagnostic Clinics. Realizing the
MDCs vision will require undergoing regulatory procedures,
which may require the investment of massive resources. This
could be financially and logistically taxing, and, as such,
resources will need to be well allocated and managed.
From an ethical standpoint, questions over responsibilities

need to be answered specifically regarding AI-assisted clinical
decision-making. While CDSSs are important to analyze
copious amounts of collected data, physicians must be able
to correct any decisions that contradict their expert judg-
ment.206 For this reason, it is important to develop transparent
and interpretable AI-based tools. Additionally, emphasis
should be placed on reducing AI bias through responsible
representation of minority groups within training data sets.
Extensive measures must be taken to ensure data security

and privacy. A data breach would expose the PHI of millions of
patients, with dangerous consequences. While advances have
been made in reducing the vulnerability of healthcare devices
to data breaches, more work is needed to address these issues
in a way that enables the efficient transfer of data from MDCs
in a secure way that does not compromise patient integrity and
rights to privacy.
Continuous monitoring platforms may be psychologically

taxing for patients, contributing to an increased need to
minimize the number of false alarms devices may trigger. While
this will lead to alarm fatigue, it may also develop a lack of trust
in the system by both physicians and patients.
Lastly, conceptualizing methods for analyzing the big data

collected from MDCs, such that they serve their role in
reducing physician load, is a bottleneck that will need to be
solved if their implementation into the clinical workflow is to
be expected soon.
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■ CONCLUSIONS AND OUTLOOK
The anticipated goal of the healthcare systems is to increase
accessibility to cutting-edge diagnostic devices and platforms.
This can be achieved by miniaturizing conventional diagnostic
devices so that they can be used outside of traditional
healthcare facilities. By increasing access to these devices, it
becomes easier to continually monitor health. While significant
developments have pushed the needle in creating suitable
technologies for the implementation of “Mobile Diagnostic
Clinics” (MDCs). Further research must still be done to realize
this vision. Notably, issues surrounding ethics and data privacy
must be addressed before any solution is rolled out to the
general public as part of modern and evolving healthcare
systems. When these issues are resolved, one can look forward
to transformed and smart healthcare tailored to the specific
needs of the individual. By increasing access to advanced
technologies, this clinical model will allow patients to receive
real-time updates on the state of their health while being sure
that any potential issues are detected at the earliest possible
stage to enable timely clinical intervention, improving
healthcare outcomes.
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