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 A B S T R A C T

Background and Objective With minor differences, most national colorectal cancer (CRC) screening programs 
in Europe consist of one-size-fits-all aged-based strategies. This paper provides a decision analysis-based 
approach to personalized CRC screening in a general population setting, supporting decisions concerning 
whether and which screening method to consider and/or whether a colonoscopy should be administered.
Methods We use an influence diagram model characterizing CRC risk with respect to different variables 
of interest, and including comfort, costs, complications, and information as decision criteria, the last one 
assessed through information-theoretic measures. The criteria are integrated with a multi-attribute utility 
model. Optimal screening policies are then computed by maximizing expected utility.
Results The proposed model is used to support personalized individual screening based on relevant features 
beyond age. It serves to assess existing national age-based screening programs as well as design new risk-based 
ones. In particular, it suggests replacing current age-based strategies prevalent in many European countries by 
more personalized strategies based on risk dependent on individual features. Additionally, the model facilitates 
benchmarking of novel screening devices. Software to implement the model and reproduce the results is 
included.
Conclusions This work develops a framework for personalized CRC screening that improves upon current 
age-based screening strategies and highlights how CRC screening strategies could be redesigned and optimized.
1. Introduction

Although colorectal cancer (CRC) is the third most common type 
of cancer worldwide, making up for about 10% of all cases, only 
about 14% of susceptible EU citizens participate in CRC screening 
programs. At the moment, these are mainly one-size-fits-all  strate-
gies [1]  based on age and using fecal testing and colonoscopy (CS). 
The latter is considered highly invasive, negatively influencing program 
uptake within the general population [2]. Indeed, [3] reports through 
the European Health Interview Survey (2018–2020) that the coverage 
of fecal tests in the population aged 50–74 varies according to the 
organization of the screening program. In countries with fully rolled-
out programs it oscillates from 37.7% in Croatia to 74.9% in Denmark; 
in turn, in countries without programs or with localized programs it 
varies from 6.3% in Bulgaria to 34.2% in Latvia. Hence, on the one 
hand, there is a clear need for accurate, non-invasive, cost-effective 
screening tests using novel technologies as well as, on the other, for 
raising awareness about  CRC and the importance of its early detec-
tion. In addition, genetic, socioeconomic, and behavioral factors can 
influence the development of CRC and lead to different disease onsets. 
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Recent studies [4] show that early-onset CRC incidence is rising in 
several countries, pointing at some of the mentioned risk factors as 
potential causes. Personalized screening strategies that consider these 
factors seem relevant together with decision tools with guarantees that 
support experts in their implementation. This is especially important 
given the discrepancies among the strategies implemented in different 
countries [5].

As an example, in 2013 the European Union (EU) drafted guidelines 
for quality assurance in CRC screening and diagnosis, recommending 
the use of national programs based on fecal immunochemical tests 
(FIT) and CS [6]. Such guidelines suggested that the identification 
and invitation of the target population, diagnosis and management of 
the disease, and the appropriate surveillance of people with detected 
lesions could be achieved by following and adopting the proposed rec-
ommendations. Interestingly, though the screening program structure 
is similar across many countries, details such as age or test cutoffs 
differ [7]. In Western Europe, most programs are regional or national 
and based on FIT or gFOBT (guiac fecal occult blood test), with wide 
differences in participation rates. In Eastern Europe, countries mostly 
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rely on pilot or opportunistic programs, also based on FIT or gFOBT, 
with lower participation rates.

Relevant analyses have been developed to assess the importance of 
various factors influencing the effectiveness of CRC screening programs. 
A significant portion of the work in the field is dedicated to applying 
Markov models for cost-effectiveness analyses of screening [8], or to 
modeling patients’ preferences concerning screening methods, taking 
into account their risk tolerance [9]. An important and complementary 
approach to further improve the evaluation of program needs, effec-
tiveness, and objectives is the development of CRC predictive models 
that form the foundation of decision-support tools for screening. In 
particular, Bayesian Networks (BNs) [10] are used to infer the influence 
that certain risk factors can have on CRC and how they could affect the 
decisions made by policymakers. Influence Diagrams (IDs) [11] extend 
BNs by incorporating decision nodes and utility variables to support 
multiple criteria decision-making under uncertainty. These tools have 
proved to be increasingly relevant in medical decision-making [12–14], 
as they can incorporate and provide information on multiple decision 
outcomes and objectives.

This paper constructs a decision support model that serves to bench-
mark CRC screening programs, among other uses. We draw upon earlier 
work on CRC risk assessment through BNs [15] and complement it to 
design an  ID model that identifies the screening methods adopted, 
their impacts, and their associated utilities. The model is employed  to 
discuss relevant policy questions concerning CRC screening. For this, 
Section 2 defines how the problem is structured and present the under-
lying prediction and preference models. After that, Section 3 describes a 
set of important use cases including supporting personalized screening 
decisions;  in the light of this, assessing national age-based screening 
strategies, as well as designing alternative risk-based strategies; and, 
finally, benchmarking of novel screening technologies that are likely 
to emerge in the next years.

Software supporting the proposed approach in GeNIe [16] and 
its Python wrapper PySMILE is available at [17] for reproducibility 
purposes.

2. Methods

2.1. CRC screening decision problem structure

This section describes the structure of our CRC personalized screen-
ing decision support model.

2.1.1. CRC underlying predictive model
Our model stems from a previous BN predictive model [15] devel-

oped for CRC risk mapping purposes in a general population setting. 
The BN aggregates exhaustive expert information and data obtained 
from a large occupational health assessment study with nearly 2.4M 
individuals, with information on a selected number of variables and 
relates modifiable (physical activity (PA), sleep duration (SD), alcohol 
consumption, smoking status, body mass index (BMI), anxiety, depres-
sion) and non-modifiable (sex, age, socio-economic status (SES)) risk 
factors as well as medical conditions (hypercholesterolemia, hyperten-
sion, diabetes) relevant to CRC, assessing such relations through local 
probability distributions at the nodes. Further details on the variables 
may be seen in Table  20 in Appendix  A. Fig.  1 presents the original 
BN, with variables in different colors depending on whether they refer 
to non-modifiable (green) or modifiable (red) risk factors, medical 
conditions (blue), or the CRC target (purple) variable. Black arrows 
were initially elicited from expert information, whereas red arrows 
were discovered and incorporated using our large database.

An extended analysis on the relevance of the selected variables, 
as well as on procedures to assess its probability tables are detailed 
in [15], where the BN is used to construct risk maps to segment the 
population according to risk levels, and detect influential variables in 
a predictive sense. It is worth noting that, as detailed in [15], all claims 
from the BN are purely predictive and not causal, as this would require 
stronger assumptions.
2 
2.1.2. CRC screening decision model
For the construction of the ID supporting CRC screening decisions, 

the original BN is complemented with a set of variables (chance, 
decision, and values), together with the corresponding arcs. Before 
presenting the variables, let us introduce four assumptions used in 
constructing the model.

1. Rather than the prevalent one-size-fits-all strategies [1], essen-
tially based on age, we aim to provide more personalized advice 
using influential variables whose information does not require 
more than a general practitioner (GP) checkup. In any case, 
the model is easily adapted if additional information based on 
other relevant risk factors or medical conditions is available, as 
Section 3.1 will illustrate.

2. We adapt to the standard strategy in many EU countries based 
on applying or not a screening device, say FIT, and, if screened 
and positive, apply a colonoscopy. The objective of the decision 
model is to suggest to a person with certain features the most 
convenient screening policy.

3. The decision made should be based on the selected variables, 
the information provided by the screening results, the costs, 
the entailed complications, and the patient’s comfort. In doing 
this, we focus on the short-term outcomes of the screening in-
tervention, and refrain from considering pointers to longer-term 
outcomes like, e.g., expected QALYs gained. This is motivated 
mostly by our interest in benchmarking novel screening devices, 
as sketched in Section 3.4, for which little information will be 
typically available. The model allows for assessing the relative 
importance of various criteria as described below through their 
integration into a multi-attribute utility function.

4. Suggested screening strategies will be chosen as maximum ex-
pected utility (EU) alternatives [18], with the utility vision of 
either the patient, the doctor, or the health policy maker, as later 
discussed.

These hypotheses, specially the third one focusing on short-term out-
comes, are broadly aligned with the recommendations from the Euro-
pean Network for Health Technology Assessment [19]. Based on them, 
we describe the remaining elements required to structure the problem 
qualitatively.

New nodes and arcs
To complete the ID design, the following nodes and arcs are added 

to the BN in Fig.  1
Decision nodes. The screening method implemented is considered 

as a decision variable. Its potential alternatives are the currently most 
common CRC screening methods, to wit: gFOBT, FIT, blood-test, stool 
DNA (SDNA) test, computed tomography colonography (CTC) and colon 
capsule (CC). Obviously, we also include the possibility of conducting
no screening.

A second decision node refers to the possibility of performing a 
colonoscopy. It is a successor of the previous one and, hence, we 
consider the possibility of performing it after (or without) screening. 
Note that it is standard in many European countries to perform a 
colonoscopy if screening suggests the presence of CRC, say through 
a positive FIT. On the other hand, several countries opt for directly 
performing a colonoscopy on susceptible patients. Both possibilities are 
thus covered within our model and, even enriched, as they can be 
combined, and further, more individualized information, beyond age, 
is used to support the corresponding screening decisions.

Chance nodes. Besides the chance nodes from the  initial BN, we 
include three additional chance ones. First, we consider the potential
complications associated with the eventual screening and colonoscopy 
interventions [5], which include bleeding, retention, perforation, death
and, obviously, no complications. The other two nodes refer to the 
results of both interventions, screening results and colonoscopy results, 
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Fig. 1. Originating CRC Bayesian network [15].
assimilated to two possible reports: predicted true (interpreted as screen-
ing or colonoscopy suggesting the presence of CRC) and predicted false
(interpreted, otherwise). We include as well a No result  state to handle 
the case when the corresponding intervention is not actually performed.

Value nodes. We introduce a multiple criteria preference model
[18] to support CRC screening decisions. As primary criteria, the model 
includes the cost of complications, the cost of the intervention, its com-
fort  and the information provided by screening and/or colonoscopy. 
Finally, we include a value node aggregating the four criteria through 
a multi-attribute utility function, later specified.

Arcs from the original BN are preserved. Besides, we include arcs 
which essentially reflect our starting hypothesis and the information 
relations between decisions and values.

First, according to hypothesis 1, we initially assume that the screen-
ing decision is made knowing variables that are easy to obtain or 
request (BMI, Age, PA, Sex, Alcohol consumption status, Smoking 
status, Sleeping duration (SD)), hence the arcs from such variables 
into the screening node. Notwithstanding these, the diagram is easily 
modifiable if we know other variables from the patient, like its eventual 
hypertension, as Section 3 illustrates.

The arc between the decision nodes and the arc connecting the 
screening results with the colonoscopy decision reflect hypothesis 2 
and permit covering the standard screening protocols within the EU. 
In turn, the arcs going into the value nodes reflect hypotheses 3 and 4. 
Note that some arcs are displayed in a lighter color. This is because the 
value function defined in Section 2.2.2 will depend on the parent nodes 
of CRC and the decision nodes.  However, to simplify the analysis and 
visual structure of the model, we just kept the original color of the arcs 
going to screening and colonoscopy results, and CRC.

2.1.3. Final influence diagram
Fig.  2 reflects the produce ID structure. In line with our comments, 

the possibly influential variables considered for the screening deci-
sion include those whose retrieval does not require further than a 
GP checkup. However, the socioeconomic situation together with the 
3 
presence of depression and anxiety have not been taken into consider-
ation as optimizing expected utility based on these variables generates 
obvious ethical conflicts.  These, however, could perfectly be used in 
future extensions of the model, e.g. for addressing screening uptake in 
the population. The diagram was presented to several medical experts 
who validated it for concept and meaning.

2.2. Quantifying the CRC screening decision model

This section describes the probability and preference models in-
cluded in the proposed ID to facilitate CRC screening decision support.

2.2.1. Probability models at chance nodes
The ID inherits the probability models at nodes from the original 

BN. We refer to [15] for details concerning how the probability tables 
were built based on prior distributions and our available occupational 
health assessment database. Note that, as a consequence, the probabil-
ities available were assessed with some uncertainty through posterior 
predictive Dirichlet distributions. We use here just the mode of such 
distributions.

For the other three chance nodes, we used public sources, mainly
[5], to obtain the required parameters. In particular, Table  21 (Ap-
pendix  B) includes the sensitivities and specificities of screening meth-
ods and those of colonoscopy, from which we deduce the required 
probabilities in the results of screening and results of colonoscopy nodes, 
given the presence (or not) of CRC and the method chosen. As an 
example, the probability table at node result of colonoscopy, which 
depends on the actual presence of CRC and the use of colonoscopy 
would be as in Table  1, with e.g. the probability of reporting Does not 
have CRC, given that the person goes through a colonoscopy and she 
actually has CRC, being 0.03.

Similarly, the probabilities in the first seven columns of Table  22 
(Appendix  B) were used to build the probability table of complications
associated with each screening method and colonoscopy. Full details of 
the tables are available in the accompanying software [17].
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Fig. 2. CRC screening decisions influence diagram.
 

Table 1
Probabilities of colonoscopy results, given antecessors.
 Colonoscopy Yes No

 CRC Yes CRC No CRC Yes CRC No CRC 
 Has CRC 0.97 0.01 0 0  
 Does not have CRC 0.03 0.99 0 0  
 No result 0 0 1 1  

2.2.2. Preference models
Ley us discuss first the preference model for each criterion and then 

how to aggregate them through a multi-attribute utility model.
Single criterion preferences

Cost 𝑐𝑖𝑛𝑡 of intervention. This criterion aggregates the costs of 
the eventual screening and colonoscopy interventions. Both should be 
minimized. We adopt the costs in e for France collected in [5] for 
France, displayed in Table  21 (bottom row).

Cost 𝑐𝑐𝑜𝑚𝑝 of complications. These are assessed through their 
entailed expected costs in e for France obtained from public sources 
in [5], available in Table  22 (right column).

Comfort 𝑐𝑜𝑚. Lacking a natural attribute to assess intervention 
comfort, we used a constructed attribute  [20] with four decreasing 
levels, the best level (4) referring to no screening ; the worst one (1), 
corresponding to colonoscopy. Though, in principle, we could assess this 
in a personalized manner, we constructed the scale reflected in Table 
2, later validated by several experts and patients.

Torrance et al. [21] provide scales within their HUI:2 quality of 
life system covering several criteria with one of them, pain, close to 
ours.  However, their effort is addressed towards assessing quality of life 
over the years by creating a utility function, whereas ours, in line with 
4 
our short-term health assessment focus [19], is more geared towards 
avoiding uncomfortable episodes.

Importantly, when both screening and colonoscopy are implemented
in a patient, the comfort value would be that of colonoscopy, that is 1, 
since this is perceived as much more uncomfortable than any of the six 
analyzed screening methods.

Information 𝑣𝑖𝑛𝑓𝑜 provided.  The more complex to understand and 
elicit attribute refers to short-term informational effects of interven-
tions. These essentially entail moving from a state of uncertainty based 
on the probability of a person having CRC (and that of not having it) 
given their features and the same probability (and its complementary) 
when we know, as well, the screening and/or colonoscopy results.

As an example, consider the case of a male adult, age 44–54, 
with normal sleep duration, physically active, normal weight, non-
smoker, and with low alcohol consumption, who is negative in all 
medical conditions considered. We shall use it as a benchmark patient 
below. Table  3 displays the CRC probability for this individual and 
his eventual probabilities after screening with FIT and colonoscopy 
for various results. For instance, a positive FIT would move the prior 
uncertainty (0.0009, 0.9991) to the posterior (0.02, 0.98). We would like 
to assess the information provided by various results taking into ac-
count such probabilities (and the complementary ones of not having 
CRC). Therefore, we seek ways to evaluate such changes in uncertainty, 
that is, to assess the value of the information that  screening provides 
concerning CRC presence. This will be based on three terms well-known 
to clinicians and policymakers: the CRC probability, and the sensitivity 
and specificity of screening tests. The rationale follows the argument 
from several works [22–24] suggesting the use of the mutual information
as a measure of diagnostic test performance. That said, the value 
of information 𝑣𝑖𝑛𝑓𝑜 provided by a screening strategy concerning the 
presence of CRC will be given by a quantity that we term normalized or
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Table 2
Comfort levels for interventions.
 𝑐𝑜𝑚 Description Interventions  
 4 The patient does not experience any discomfort No screening  
 3 The patient experiences a minor discomfort or the test implies a small 

inconvenience: time lost, emotional difficulty, or minor physical pain.
FIT, gFOBT, sDNA, 
Blood-test

 

 2 The discomfort experienced by the patient is noticeable. There is a noteworthy 
emotional aversion and a few moments of physical discomfort.

CTC, CC  

 1 The discomfort is very significant. The test causes some periods of pain resulting in 
remarkable distress.

Colonoscopy  
Table 3
Probabilities of CRC depending on screening outcomes for benchmark patient.
 𝑝(𝐶𝑅𝐶) 𝑝(𝐶𝑅𝐶|𝐹𝐼𝑇−) 𝑝(𝐶𝑅𝐶|𝐹𝐼𝑇+) 𝑝(𝐶𝑅𝐶|𝐹𝐼𝑇+, 𝐶𝑂𝐿−) 𝑝(𝐶𝑅𝐶|𝐹𝐼𝑇+, 𝐶𝑂𝐿+) 
 0.0009 0.0002 0.02 0.0006 0.65  
Table 4
No screening 𝑣𝑖𝑛𝑓𝑜 for benchmark.
 Scr No screening
 𝑅𝑠 No pred
 CRC False True

 Col No Col Colonoscopy No Col Colonoscopy

 𝑅𝑐 No pred Pred false Pred true No pred Pred false Pred true 
 𝑣𝑖𝑛𝑓𝑜 0.0 0.12 −11.44 0.0 −509.19 654.93  
relative pointwise mutual information (RPMI) and that is defined through 

𝑣𝑖𝑛𝑓𝑜(𝑐𝑟𝑐, 𝑟𝑠, 𝑟𝑐 ) =
[

log
(

𝑝(𝑐𝑟𝑐|𝑟𝑠)
𝑝(𝑐𝑟𝑐)

)

+ log
(

𝑝(𝑐𝑟𝑐|𝑟𝑠, 𝑟𝑐 )
𝑝(𝑐𝑟𝑐|𝑟𝑠)

)]

/

𝐻(𝐶𝑅𝐶).

(1)

Intuitively, the first log term accounts for the change in uncertainty on 
the state of CRC after performing screening, while the second log term 
accounts for the change in the uncertainty of CRC when performing a 
colonoscopy after screening. Besides, 𝐻(𝐶𝑅𝐶) refers to the entropy of 
CRC. Appendix  D provides a detailed construction and explanation of 
this value function.

Importantly, this proposal facilitates acknowledging some difficul-
ties usually encountered in the preference elicitation scenarios consid-
ered in the CRC domain. For instance, in relation to the psychological 
cost of unnecessary assessments associated with false positives [25] and 
the possibility of a delay in the CRC diagnosis and subsequent dissua-
sion of participants for later assessment [7], the proposed mechanism 
weighs these situations through their corresponding uncertainty.

As examples, Tables  4 and 5 respectively provide the 𝑣𝑖𝑛𝑓𝑜 for 
our benchmark patient when not undertaking screening and when 
performing FIT. Positive values correspond to correct predictions; neg-
ative values, to wrong ones; and, finally, zero indicates no change in 
uncertainty. Values corresponding to cases in which CRC is present are 
larger in magnitude as they have a low probability. This conforms with 
the argument that a missed CRC positive scenario is much worse than 
a misdiagnosed healthy patient [26]. When screening is performed, not 
much information is gained if the result predicts false, the most likely 
scenario in general. However, the information provided is much larger 
when the prediction is true, further increasing its value when a posterior 
colonoscopy is performed.

Fig.  3 plots the 𝑣𝑖𝑛𝑓𝑜 function for all possible values of the proba-
bility of having CRC facilitating comparison of screening methods in 
terms of information. Observe that blood-test, CTC, and gFOBT are 
bounded above by the rest of screening methods in terms of the infor-
mation measure used. From this, we conclude that we could discard 
blood-test and CTC as they are equal or worse to FIT in the four 
criteria (information, comfort, specificity, sensitivity) considered. This is 
not the case, however, for gFOBT as it is the cheapest method and has 
non-dominated performance metrics.
5 
Fig. 3. 𝑣𝑖𝑛𝑓𝑜 for various CRC screening alternatives.

Further notice how in a low prevalence scenario highly specific 
tests, like FIT, provide more information, whereas highly sensitive tests, 
like sDNA, do so when the probability of CRC is larger. That difference 
in sensitivity and specificity is also what provokes the asymmetries in 
the curves in Fig.  3.
Multiple criteria preference aggregation

As the final step for constructing our decision model, let us ag-
gregate the criteria through a utility function 𝑢, first employing a 
multicriteria value function, then transforming it to take into account 
risk aversion, see [27] for a detailed conceptual description.

We first aggregate the costs in e so that 𝑐𝑜𝑠𝑡 = 𝑐𝑖𝑛𝑡 + 𝑐𝑐𝑜𝑚𝑝 for 
each intervention. The information provided by the screening strategy 
is already in compact form, and, thus, we next define the global value 
function as a weighted aggregation of the intervention costs and infor-
mation, taking into account comfort. To wit, for a fixed comfort level 𝑘, 
under reasonably general conditions [27], we use a general weighted 
additive value model. However, after initial numerical experiments 
with the original information and cost scales, we decided to log10 this 
last one, finally adopting the model
𝑣(𝑐𝑜𝑠𝑡, 𝑖𝑛𝑓𝑜, 𝑐𝑜𝑚𝑓 = 𝑘) = 𝜆 × 𝑣 − log (𝑐𝑜𝑠𝑡 + 1),
𝑘 𝑖𝑛𝑓𝑜 10
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Table 5
FIT 𝑣𝑖𝑛𝑓𝑜 for benchmark.
 Scr FIT

 𝑅𝑠 Pred false Pred true
 CRC False True False True

 Col No Col Colonoscopy No Col Colonoscopy No Col Colonoscopy No Col Colonoscopy

 𝑅𝑐 No pred Pred false Pred true No pred Pred false Pred true No pred Pred false Pred true No pred Pred false Pred true 
 𝑣𝑖𝑛𝑓𝑜 0.09 0.12 −2.97 −196.80 −706.08 466.52 −2.59 0.04 −151.00 448.05 −58.63 966.01  
Table 6
Expected information of different policies for reference patient.
 Screening No screening FIT sDNA

 Result of Scr No pred Predicted false Predicted true Predicted false Predicted true
 Colonoscopy No Col Col No Col Col No Col Col No Col Col No Col Col  
 Exp. 𝑣𝑖𝑛𝑓𝑜 0.0 0.532 0.049 0.187 5.722 15.802 0.086 0.134 0.911 4.394 
Table 7
Expected information of interventions benchmark.
 No scr. gFOBT FIT Blood sDNA CTC CC Colonos. 
 𝑣𝑖𝑛𝑓𝑜 0 0.129 0.245 0.121 0.197 0.159 0.225 0.532  
 
 

 
 
 

 

 
 
 

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 

where 𝜆𝑘, textcolorblue designated comfort parameter, is a weighting
factor that depends on the comfort of the screening strategy and serves
as a trade-off between information and log-cost.

The elicitation of the comfort parameters is delicate. We adopted
the following strategy. Assume that only one test is performed at each
time and the amount of information corresponds to the reduction
of uncertainty through a single independent test, that is, 𝑣𝑖𝑛𝑓𝑜 =
𝑀𝐼(𝐶𝑅𝐶,𝑅𝑠)∕𝐻(𝐶𝑅𝐶). Consider two screening methods with the
same comfort level 𝑘, yet different costs and values, say (𝑖𝑛𝑓𝑜1, 𝑐𝑜𝑠𝑡1)
and (𝑖𝑛𝑓𝑜2, 𝑐𝑜𝑠𝑡2), where, typically, the more informative the method is,
the more expensive it will be. Assume that no method dominates the
other, in the sense of being cheaper and more informative, and that the
individual declaring his preferences reveals that he favors (𝑖𝑛𝑓𝑜1, 𝑐𝑜𝑠𝑡1)
to (𝑖𝑛𝑓𝑜2, 𝑐𝑜𝑠𝑡2), represented as (𝑖𝑛𝑓𝑜1, 𝑐𝑜𝑠𝑡1) ≻ (𝑖𝑛𝑓𝑜2, 𝑐𝑜𝑠𝑡2). Then, we
interactively ask the respondent for a 𝑐𝑜𝑠𝑡 value (smaller than 𝑐𝑜𝑠𝑡2)
such that (𝑖𝑛𝑓𝑜1, 𝑐𝑜𝑠𝑡1) ∼ (𝑖𝑛𝑓𝑜2, 𝑐𝑜𝑠𝑡). These options would have the
same value, that is, 
𝜆𝑘 × 𝑖𝑛𝑓𝑜1 − log10(𝑐𝑜𝑠𝑡1 + 1) = 𝜆𝑘 × 𝑖𝑛𝑓𝑜2 − log10(𝑐𝑜𝑠𝑡 + 1), (2)

and we solve for 𝜆𝑘 = (log10((𝑐𝑜𝑠𝑡1 + 1)∕(𝑐𝑜𝑠𝑡 + 1))∕(𝑖𝑛𝑓𝑜1 − 𝑖𝑛𝑓𝑜2)).
Such value would then be subject to standard consistency checks, see
e.g. [28].  In particular, note that we would expect that for lower
discomfort, the value of 𝜆 should be larger, that is, 𝜆4 > 𝜆3 > 𝜆2 > 𝜆1,
so that information is perceived as more valuable when obtained from
a more comfortable screening tool.

A more robust estimation of the parameter would perform this
exercise for each pair of screening methods at each comfort level,
obtain the corresponding estimations, and reconcile them through their
median. This final estimation would typically be more robust than just
a single estimation made out of a chosen pair of screening methods, but
has the drawback of requiring a larger elicitation effort on behalf of the
decision respondent. Appendix  C provides a full elicitation exercise for
the following example.

Example 1.  For reference purposes, consider the benchmark patient
to elicit the comfort parameters. Table  7 presents the 𝑣𝑖𝑛𝑓𝑜 provided by
all interventions. Fig.  4 contains the cost and information provided by
the methods for the benchmark patient as well as their comfort. Note
that, in this case, the screening alternatives that are non-dominated are
no screening, gFOBT, FIT, and colonoscopy. This will not always be the
case as our information value assesses uncertainty and depends on the
probability of having CRC, see Section 3.5.
6 
Fig. 4. Scatterplot.

To illustrate the elicitation process, consider comfort level 2. CTC 
and CC respectively provide a 𝑣𝑖𝑛𝑓𝑜 of 0.159 and 0.225, their aggregated 
costs being 96.51e and 510.64e. Suppose the individual declares 
preferring CTC to CC. He is interactively asked how much should the 
CC cost be so that they are indifferent to one or the other. Assuming 
that the interview converges to a cost of 180e, using (2) we obtain 
𝜆2 = 4.17.

For comfort level 3, FIT and gFOBT respectively provide a 𝑣𝑖𝑛𝑓𝑜 of 
0.245 and 0.129, while their aggregated costs are 14.34e and 12.14e. 
Suppose the patient declares preferring FIT and that the indifference 
cost for gFOBT is 3e. Then, we obtain 𝜆3 = 5.04. Repeating this process 
for all pairs of methods at this comfort level and taking their median, 
we obtain 𝜆3 = 6.80. Table  23 (Appendix  C) reflects the full elicitation 
exercise.

Comfort levels 1 and 4 are slightly different as we only have one 
option for them. For comfort level 1, let us consider a synthetic test, 
providing a 𝑣𝑖𝑛𝑓𝑜 of 0.4 and an indifference-associated cost with respect 
to colonoscopy of 300. In that case, 𝜆1 = 4.01. For comfort level 4, both 
the 𝑣𝑖𝑛𝑓𝑜 and cost are 0. Therefore, 𝜆4 has no impact in the calculation 
of the value function, and we just assign 𝜆4 so that the monotonicity of 
the 𝜆’s is preserved, leading to Table  8. ▵
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Table 8
Values of 𝜆 parameters.
 Parameter Value 
 𝜆1 4.01  
 𝜆2 4.17  
 𝜆3 6.80  
 𝜆4 7  

Table 9
Utility parameters.
 Param. Value 
 𝑎 1.015 
 𝑏 0.872 
 𝜌 0.039 

Once the value function is elicited, assuming (constant absolute) risk 
aversion [27] we adopt the following expression for the utility function
𝑢(𝑐𝑜𝑠𝑡, 𝑖𝑛𝑓𝑜, 𝑐𝑜𝑚𝑓 ) = 𝑎 − 𝑏 × exp (−𝜌𝑣(𝑐𝑜𝑠𝑡, 𝑖𝑛𝑓𝑜, 𝑐𝑜𝑚𝑓 )),

where 𝜌 is the risk aversion coefficient and 𝑎 and 𝑏 are scaling constants 
constraining the utility to the [0, 1] interval for the three reference 
alternatives, determined using, e.g., the classic probability equivalent 
(PE) method [29]. 

Example 2 (Cont.).  In our problem, we assume that the presence of 
CRC is uncertain and, hence, the best outcome in terms of information 
collected will be detecting a high-risk patient with a very specific test 
and then performing a colonoscopy. In turn, in terms of information, 
the worst outcome would be not doing anything as it entails no added 
value. Concerning cost, the best option would be a costless test, while 
the worst option would be a very expensive test with all complications, 
producing an additional cost to the patient. Thus, we choose as ref-
erence the pairs (𝑐𝑜𝑠𝑡∗ = 0e, 𝑖𝑛𝑓𝑜∗ = 15.75) and (𝑐𝑜𝑠𝑡∗ = 8131.71e, 
𝑖𝑛𝑓𝑜∗ = 0).

Suppose that the reference to assess the risk aversion coefficient is 
(𝑐𝑜𝑠𝑡 = 50e, 𝑖𝑛𝑓𝑜 = 4.1).1 Assume all interventions have comfort level 
3 and we obtain through the interview that the PE is 0.7. We then 
consider the system
⎧

⎪

⎨

⎪

⎩

𝑎 − 𝑏 × exp (−𝜌𝑣(8131.71, 0, 3)) = 0
𝑎 − 𝑏 × exp (−𝜌𝑣(0, 15.75, 3)) = 1,
𝑎 − 𝑏 × exp (−𝜌𝑣(50, 4.1, 3)) = 0.7

leading to Table  9. ▵

We employ such parameters in our use cases in Section 3.

3. Results

Once with our ID built and validated, we illustrate its application in 
relevant use cases in relation to providing personalized screening ad-
vice; assessing national age-based screening strategies; designing risk-
based national screening strategies; and, benchmarking novel screening 
technologies.

3.1. Personalized screening advice

Let us exemplify a few cases of individuals for which our model 
would propose different screening advice showcasing how our ap-
proach personalizes screening recommendations, as summarized in 
Table  10.

1 These values have been chosen to maximize the tool’s capability for 
classification as a validation mechanism, maximizing the F1-score. See end 
of Section 3.3.
7 
Fig. 5. Plot of 𝑣𝑖𝑛𝑓𝑜 at different 𝑝(𝐶𝑅𝐶) levels.

Start with the benchmark patient from Section 2.2.2 whose proba-
bility of having CRC was 0.00085. Running our model, the decision 
with maximum EU for him would be not performing screening (EU 
0.143). As a comparison, the decision with the second highest EU 
(0.142) is FIT (followed by a colonoscopy if the predicted result is 
positive).

Suppose now that the preference model is more risk-seeking, re-
ducing the risk aversion coefficient 𝜌 from 0.039 to 0.005. Then, 
the optimal suggested policy would be FIT (EU 0.147), followed by 
a colonoscopy if the FIT result is positive (and no colonoscopy if 
negative). Furthermore, all of the tests, except for CC and blood-test, 
are preferred to no screening. Intuitively, in this problem, a risk-seeker 
would be willing to make a larger expense for the information.

As mentioned, the model is easily adaptable when additional med-
ical information is available, beyond the seven variables obtainable 
through a GP visit. This is done by just adding the corresponding arrows 
that go from the new variables of interest to the decision node. As 
an example, suppose that we also know that the benchmark is hyper-
tense and has diabetes. His probability of having CRC is much larger 
(0.0039). Using the model, the advice would be to screen with sDNA 
(EU 0.146), followed by a colonoscopy if the prediction is positive.

Suppose now that for a given person we have access to an exogenous 
variable that changes the probability of CRC to 0.1, e.g. based on 
knowing that the patient has CRC family antecedents. In this situation, 
the recommendation for the first decision would be FIT with an EU 
of 0.183; the policy with the highest EU would be FIT followed by no 
colonoscopy even if the result is positive. The reason behind this is that 
the change in uncertainty that a test can produce at these relatively 
high levels of CRC probability is not worth the costs associated with 
a colonoscopy. Indeed, the information provided by a FIT in this case 
is already quite significant as it changes the prior probability of CRC 
from 𝑝(𝐶𝑅𝐶) = 0.1 to 𝑝(𝐶𝑅𝐶|𝐹𝐼𝑇+) = 0.710 when the result of FIT is 
positive, rendering somewhat redundant the results of a colonoscopy.

3.2. Assessing the French national screening strategy

Given the previous example, our goal now is to assess, the current
one-size-fits-all age-based French screening strategy. This case is chosen 
because of data availability [5]. Note though that the methodology 
is general and may be easily replicated in many other countries with 
similar strategies.

More precisely, the target population for CRC screening are citizens 
in the age range [50–74] which do not have any hereditary condition 
or familiar CRC antecedents; when FIT is positive, participants are 
suggested to undertake a colonoscopy [30]. Let us present three cases 
that are not properly prioritized in the current strategy.
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Fig. 6. Plot with different PE info and PE cost.
Table 10
Personalized screening strategies in the four cases.
 1st EU 2nd EU EU Pred false EU pred true
 recom recom No col Col No col Col  
 Benchmark patient No scr .143 FIT .142 – – – –  
 BP risk seeking FIT .147 sDNA .145 .139 .133 .293 .370 
 BP added ev. sDNA .146 FIT .145 .084 .056 .289 .536 
 Exogen. var. 𝑝 = .1 FIT .183 sDNA .173 .131 .098 .631 .554 
 
 
 
 
 
 
 

 
 
 
 

 

1. Consider a man with age [54–64], normal sleep, normal BMI,
physically active, non-smoker, low alcohol consumption and not
having diabetes or hypertension. His probability of having CRC
is 0.0022. Because of his age, he would be asked to undertake
FIT. However, the proposed model suggests that it is better to
administer sDNA (EU 0.145) rather than FIT (EU 0.144). Both
would be followed by a colonoscopy if the screening prediction
is CRC-positive.

2. Consider now a man with age [44–54], with similar charac-
teristics but having diabetes and hypertension. His probability
of having CRC is 0.0039. Because of his age, he would not be
called to participate in the screening program. However, the
model suggests this patient should undertake sDNA (EU 0.146),
followed by colonoscopy if sDNA is positive.

3. Finally, for the case of a man with age [44–54], overweight,
normal sleep, high-alcohol consumption, physically inactive, and
 

8 
ex-smoker, the probability of having CRC will be 0.0018. The 
proposed model suggests that the  optimal screening method  is 
FIT with 0.143, followed by a colonoscopy if its result is positive.

These examples suggest that the current age-based strategy may fail 
in various ways. As an example, the second patient should be prior-
itized over the first one within a screening program. Further, sDNA 
may be more recommendable for higher-risk patients, while FIT is a 
better choice for moderate-risk patients. Predictive models for decision-
making can help redistribute resources to produce more efficient
screening programs, as we show next.

3.3. Designing a national personalized screening strategy

Let us discuss now how the design of a national screening strategy 
could be based on our model. For this, we use a database with around 
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Table 11
Comparison of strategies with no constraints (top row) and with constraints (third row). Operational limits are shown in the second row.
 Nothing Colon. gFOBT FIT Blood sDNA CTC CC Total  
 No lim recom. 291323 0 0 560 0 47824 0 0 48384 
 Oper. limit ∞ 3000 30000 42000 7000 6000 2000 2000 –  
 Final recom. 291707 0 0 42000 0 6000 0 0 48000 
 National 290 633 0 0 49074 0 0 0 0 49074 
350 000 individuals whose records were kept for testing purposes for 
the BN model in Section 2.1.1,  as [15] fully describes. We use all 
thirteen available variables in the network for this use case. As our 
database does not include screening or colonoscopy results, we simulate 
them based on the sensitivity and specificity information of various 
interventions available in Table  21.

When designing a screening program,  it is important to take 
into account resource constraints on e.g.  the maximum number of 
colonoscopies and screening operations performable, because of lab, 
personnel, and device availability, as well as due to budget limits. 
The issue is, then, how do we best allocate such resources using 
the decision support model in Section 2.  Our approach will assign 
screening methods in order of maximum EU: individuals with higher 
EU will be offered screening earlier as they are assimilated with the 
population benefiting more from screening. The screening choice will 
be that providing the highest EU. Once the 𝑛𝑖 tests available for the 
𝑖th screening method are saturated, we remove it from the list of 
available methods and search for those with the maximum EU among 
the remaining ones. The process continues until we reach all available 
test limits or cover the entire targeted population. We assume that there 
is no limit on the available colonoscopies after a positive screening 
prediction as these are fundamental for a correct diagnosis, a sound 
assumption as it corresponds to the standard health practice. On the 
other hand, primary colonoscopies (those directly delivered without 
screening) will indeed be limited.

Let us see how this strategy performs by comparing three setups:

1. We assume there are no constraints when applying the new 
strategy.

2. Constraints are set on the number of tests for each screening 
method, as expressed in Table  11 middle row. Specifically, we 
limit the maximum number of primary colonoscopies to 3000; 
gFOBT to 30000; FIT to 42000; blood-based tests to 7000; sDNA 
to 6000; CTC to 2000; and, CC to 2000, therefore being able to 
cover 92000 individuals (out of the 350000).

3. Finally, the current national age-based strategy.

With the parameters developed throughout the text, the distribution of 
recommended tests and results would be as Table  11 shows,  where the 
first row indicates tests administered when no constraints are included; 
the middle row indicates test constraints; the third row indicates the 
number of tests when constraints are included; and, finally, the results 
attained with the current national strategy. Interestingly, only sDNA 
and FIT are recommended as screening technologies. The excess of 
recommended sDNA tests is distributed by administering FIT and imple-
menting no screening. No direct colonoscopy would be recommended 
in this general context. For 291707 patients, no screening is preferred 
to the remaining alternative screening methods even when setting 
operational limits.

We apply the three strategies described and obtain results for 200 
simulations. Tables  12–14 contain their confusion matrices for CRC 
classification with values corresponding to the mean over 200 simu-
lations and their standard deviations. Table  12 shows how the current 
age-based strategy has a poor performance in detecting patients  with 
CRC, i.e. a poor sensitivity of 0.36. In turn, the proposed unconstrained 
new strategy, Table  13, increases detection sensitivity to 0.45; however, 
this comes with the trade-off of a decrease in precision (0.82 to 0.64), 
resulting in a larger number of false positives. Concerning cost, the 
unconstrained new strategy entails an increase in the average cost 
9 
Table 12
Mean classification results with current strategy. Cost per patient: 7.24e.
 Predicted no CRC Predicted CRC 
 No CRC 339 472.1 ± 4.0 16.9 ± 4.0  
 CRC 139.8 ± 4.4 78.3 ± 4.4  

Table 13
Mean classification results with new strategy, no constraints. Cost per patient:
44.62e.
 Predicted no CRC Predicted CRC 
 No CRC 339 425.2 ± 8.2 63.8 ± 8.2  
 CRC 121.3 ± 3.1 96.7 ± 3.1  

Table 14
Mean classification results for new strategy with operational constraints. Cost per 
patient: 12.79e.
 Predicted no CRC Predicted CRC 
 No CRC 339 466.5 ± 4.9 22.5 ± 4.9  
 CRC 134.8 ± 4.1 83.2 ± 4.1  

(44.62 e vs. 7.24e per patient).  To account for that cost increase 
and the precision reduction, we set operational limits (second row of 
Table  11) on the number of tests usable for each method. Table  14 
shows the corresponding classification metrics from this strategy, with 
more moderate costs (12.79 e vs. 7.24e per patient). There is still an 
increase in sensitivity (0.37) and a decrease in precision (0.79), but 
both are more subtle. Depending on the cost-information trade-off and 
risk attitude, the take on the results of the new strategy is that such 
investment may be recommended to reach higher sensitivity levels and 
thus increase the number of detected patients in screening programs. 
However, this is not always manageable and demands an operational 
limit in more realistic scenarios.

Table  15 summarizes the proposed risk-based screening strategy, 
and compares it with the current national screening strategy in Spain, 
in terms of its design. As an example, a man under 50 with high risk 
(due to e.g. high alcohol consumption, overweight, ex-smoking) would 
be identified by the model as a higher risk patient than a healthy man 
above 60. 

As a final validation, assume that the current system can cover 
49,074 FIT tests, the number of people in the age range [54,64] in 
our 2016 dataset. Assuming this, we compare the current strategy 
with our model by taking the 49,074 patients with highest EU for 
FIT and performing 200 simulations to assess performance and cost 
differences. Table  16 shows a subtle increase in sensitivity when using 
the model, correctly detecting an average of one more patient (an 
increase of 1%) and reducing the cost of the whole strategy by around 
33000e. Although the improvement might seem relatively low, when 
extrapolated to a real-sized population, the method can save many 
lives and money.  For example, in France and Spain, respectively with 
populations of 8, 591, 286 and 6, 583, 183 within such age range, the 
implementation of the model would detect about 175 and 134 more 
positive patients in both countries.

3.4. Benchmarking of new screening devices

Given the increasing importance of CRC from a public health policy 
perspective, it is likely that, in the near future, there will be novel CRC 
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Fig. 7. Screening count distribution for different 𝜆 values.
Table 15
Comparison of current Spanish screening strategy vs. proposed risk-based approach. 𝜃1 and 𝜃2 depend on resources 
available.
 Current Spanish strategy Proposed risk-based strategy  
 ∙ If patient >50 years old: Send FIT invitation.
∙ Else: No screening, invitation.

For patient with features 𝑥:
∙ if 𝑝(𝐶𝑅𝐶|𝑥) < 𝜃1 →, no screening invitation.
∙ if 𝜃1 ≤ 𝑝(𝐶𝑅𝐶|𝑥) < 𝜃2 →, FIT invitation.
∙ if 𝑝(𝐶𝑅𝐶|𝑥) ≥ 𝜃2 →, sDNA invitation.

 

Table 16
Mean classification results for new strategy on 49074 patients with highest FIT utility. 
Cost per patient: 7.14e.
 Predicted no CRC Predicted CRC 
 No CRC 339 472.5 ± 4.0 16.54 ± 4.0  
 CRC 138.9 ± 4.6 79.1 ± 4.6  

Table 17
Features of two new screening devices, Dev1 and Dev2.
 Device Cost Specif. Sensit. Comfort 
 Dev1 250 0.85 0.8 2  
 Dev2 3 0.85 0.94 3  

screening devices.2 We discuss here how the approach proposed may 
be used to benchmark new devices. For illustration purposes, suppose 
we have come out with two new devices with features as in Table  17.

First of all, we should check whether the new devices are not 
dominated by the current ones. As an example, we would reject Dev1 
because it is dominated by sDNA, whose features are 𝑐𝑜𝑠𝑡 = 236.88e, 
𝑠𝑝𝑒𝑐𝑖𝑓 = 0.866, 𝑠𝑒𝑛𝑠𝑖𝑡 = 0.923 and 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = 3. However, Dev2 is non-
dominated. Let us assess it with our model. Fig.  5 shows that for most of 
the range of the CRC probability below 0.55, the new test reduces un-
certainty more than currently available screening tests. For extremely 
low CRC probability values, FIT still provides more information due to 
its better specificity. However, as Dev2 is much cheaper than FIT and 
has the same comfort value, we have that for the benchmark patient, 
the EU of the new test is 0.179, which is higher than that of the previous 
recommendation which was no screening (Section 3.1).

Suppose that we implement this test. As Table  18 shows, with 
the considerations that our model makes in terms of cost, comfort, 

2 As an example, this is one of the aims of the ONCOSCREEN project 
https://oncoscreen.health/.
10 
and information, we would be recommending this test to the entire 
population. However, this is in general hard to achieve and would 
entail a large cost (63.86e per patient) due to the high number of 
colonoscopies carried out. Hence, we generate a case in which we have 
50,000 new Dev2 tests and the same resources as in the examples 
from Section 3.3. Table  19 provides the classification results with this 
strategy, which essentially increases the number of detected patients by 
more than 10, an increase of around 20%. The number of false positives 
also increases, as well as the total cost (9.85e per patient), as more 
patients are being predicted CRC positive and require a colonoscopy. 
However, the increment in the F1 score [31], a common classification 
measure that balances the importance of true and false positives and 
negatives, from 0.50 in the original strategy to 0.54 shows that the 
benefit would be significant in classification terms.

3.5. Sensitivity analysis

It is important to assess the impact of the inputs on the output of 
the analysis through a sensitivity analysis. We focus here on the impact 
of the utility function obtained from the screening resource allocation. 
We restrict ourselves to the case of no resource limitation, as it may 
potentially reveal more variability.

3.5.1. Sensitivity analysis with respect to the probability equivalent
We first analyze the impact of the probability equivalent (PE) 

elicited to determine the risk aversion coefficient in the allocation of 
screening tests. Fig.  6 plots the optimal screening resource allocations 
showing how information generally impacts test allocation more than 
cost, as changes are more noticeable vertically than horizontally. In 
general, the total number of recommended tests increases as the weight 
given to the value of information increases and decreases as the weight 
given to cost increases.

The intuition behind this is that sDNA is, given the comfort levels, 
the recommended test for higher-risk patients as it is the most sensi-
tive one and thus provides the highest quality information. However, 

https://oncoscreen.health/
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Table 18
Comparison of strategies when adding the new test.
 Nothing Colon. gFOBT FIT Blood sDNA CTC CC New Total  
 No lim. recom. 0 0 0 0 0 0 0 0 339707 339707 
 Op. limit ∞ 3000 30000 42000 7000 5000 2000 2000 50000 –  
 Final recom. 287920 0 0 1787 0 0 0 0 50000 51787  
Table 19
New strategy including new tests. Cost per patient: 9.85e.
 Predicted no CRC Predicted CRC 
 No CRC 339 458.5 ± 5.4 30.5 ± 5.4  
 CRC 126.8 ± 3.8 91.2 ± 3.8  

suppose a larger weight is given to information at lower costs. In that 
case, the number of FITs will increase as it is one of the cheapest 
methods and provides quite competitive information regarding CRC 
presence. Suppose now that information is valued more at higher costs. 
In that case, the number of sDNA tests allocated will increase as long 
as its information-cost tradeoff surpasses the utility of not undergoing 
screening.

3.5.2. Sensitivity analysis with respect to the comfort parameters
Let us discuss now sensitivity with respect to the comfort parameters 

𝜆. Remember that by repeating the elicitation exercise for comfort 
3 screening methods, we ensured some robustness of the method in 
relation to 𝜆3. However, for the other comfort levels, this cannot be 
done due to the absence of additional tests for comparison. Moreover, 
the elicitation of comfort values depends on the available tests and 
does not account for alternative or future tests and their respective 
information values. This is complicates extrapolating results to new 
strategies, as seen in Section 3.4 where, with the established elicited 
parameters using the original tests, the new test is recommended to the 
entire population due to its great features, being this recommendation 
far from manageable. We look into how the variability in these values 
can lead to differences in recommendations and thus highlight the 
importance of consistency and robustness in the elicitation protocol.

Fig.  7 presents two screening recommendation allocations. The first 
one corresponds to decreasing the value of level 3 comfort to 𝜆3 =
6.3; observe how a lower comfort parameter reduces the number of 
screenings performed, increasing the amount of non-screened people. 
The second case corresponds to raising the value of level-1 comfort 
to 𝜆1 = 4.8 and level 2 to 𝜆2 = 5; the increase in the weight given 
to the comfort value for colonoscopy has a large effect in increasing 
the number of recommended sDNA tests. Recall that a colonoscopy 
is usually performed after a positive screening result, and thus, as 
the weight given to the comfort value for colonoscopy increases, the 
expected value of all screening methods also increases. However, this 
change is more noticeable for sDNA, it being the most sensitive tool, 
thus detecting more CRC positive cases.

Thus, a moderate modification of comfort parameters seems to 
impact program results. To ensure consistency, we would recommend 
following the elicitation protocol in a moderate number of patients 
chosen at random, and asking them about their indifference between 
cost, information, and comfort. Repetition and randomization would 
enable a more robust estimation of comfort parameters which would 
benefit model applicability.

4. Discussion

We have developed a decision analysis model and its accompanying 
decision support system for personalized screening in connection with 
CRC detection. Stemming from an earlier predictive model [15] we 
incorporated decision, value, and additional chance nodes, as well 
as new arcs, assessing the new probability tables. We introduced a 
multi-attribute utility model to support what combination of screening 
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and colonoscopy decisions should be implemented for an individual 
with certain features. This could help strengthening the monitoring 
systems of colorectal screening programs, as has been proposed for 
European countries [32]. As showcased, this facilitates a more per-
sonalized approach to CRC screening within the general population as 
well as designing large-scale screening strategies taking into account 
constraints on treatment availability. Apart from the viability of the 
use of the model in public health management, it can also serve to 
simulate screening scenarios, regarding how to distribute screening 
tests according to different risk levels and estimate the costs of different 
strategies. The system enables as well benchmarking of novel screening 
devices.

The preference model incorporated was that in Section 2.2.2, and 
assimilated to that of the policy-makers designing or assessing a screen-
ing strategy. Its construction is based on preference elicitation tech-
niques, a standard tool in decision analysis for parameter estimation. 
This may be easily modified, extending it to the case of several PMs and 
screening methods, and eventually can be individualized for patients 
to promote a more personalized approach to screening as suggested in 
the [33] guidelines.

As Section 3.1 illustrates, the model may be adapted and enhanced 
when additional variables are taken into account. In particular, this 
may be the case when data concerning diet, genetics or CRC family 
history are available, which was not the case in our initial dataset. 
The availability of information on additional variables can be very 
useful in improving the possibilities of better personalizing screening 
programs, giving place to more complex workflows for health systems 
which could include other types of medical-related models [34]. In 
any case, the major strength of this work lies in its development of 
a practical framework and methodology adaptable to more complex 
scenarios. As an example, we presented the assessment of the French 
screening strategy, but the framework may be replicated in other coun-
tries, especially when no screening programs are in place. Further, the 
model could be extended to consider a temporal setting, which could 
aid in modeling patient and disease behavior through time, and could 
leverage tools from common health technology assessment methods, 
such as, for example, measuring QALYs after performing screening or 
colonoscopy.

At least, two future lines emerge at least from this work. The 
first one refers to benchmarking the new screening devices that are 
being developed within the ONCOSCREEN project with the method-
ology specified in Section 3.4.  The second one, following the above 
mentioned [3], which found statistical evidence that less participation 
in screening programs corresponds to unmarried adult patients with 
a low educational level, who live in rural areas, have an unhealthy 
lifestyle or spend long periods without health checks, stems from the 
low acceptance of CRC screening programs in many countries, and will 
focus on extending our model with incentive mechanisms to promote 
screening adoption. These will involve modeling variables regarding 
acceptability and health literacy, which highly influence screening 
uptake.
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Appendix A. Variables in the original BN model

See Table  20.

Appendix B. Probabilities available from public sources

To assess the probabilities in the chance nodes introduced, Table  21 
compiles the performance information of the screening methods as well 
as their cost with data available from Barré et al. [5], based on French 
sources.

We also require the probabilities and expected costs of complica-
tions as reflected in Table  22 based on [5].

Appendix C. Full elicitation of comfort parameters

Table  23 contains full details of the calculations used to assess 
comfort parameters.
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Table 20
Fourteen variables in the BN model.
 Variable Definition Levels  
 𝑣𝑠𝑒𝑥 Sex {female, male}  
 𝑣𝑎𝑔𝑒 Age (24,34], (34,44], (44,54], (54,64]  
 𝑣𝑆𝐸𝑆 Socioeconomic status {1,2,3}  
 𝑣𝐵𝑀𝐼 Body mass index {underw., normal, overw., obese}  
 𝑣𝑃𝐴 Physical activity {insufficiently active (1), sufficiently active (2)} 
 𝑣𝑆𝐷 Sleep duration {short, normal, excessive}  
 𝑣𝑎𝑙𝑐 Alcohol consumption {low, high}  
 𝑣𝑠𝑚𝑜𝑘 Smoker profile {non-smoker, ex-smoker, smoker}  
 𝑣𝑎𝑛𝑥 Anxiety {yes, no}  
 𝑣𝑑𝑒𝑝 Depression {yes, no}  
 𝑣ℎ𝑦𝑝𝑡𝑒𝑛 Hypertension {yes, no}  
 𝑣ℎ𝑦𝑝𝑐ℎ𝑜𝑙 Hypercholesterolemia {yes, no}  
 𝑣𝑑𝑖𝑎𝑏 Diabetes {yes, no}  
 𝑣𝐶𝑅𝐶 Colorectal cancer {yes, no}  

Table 21
Specificity, sensitivity, and cost ine of interventions.
 gFOBT FIT BldBsd sDNA CTC CC Colons. 
 Sensitivity 0.45 0.75 0.66 0.923 0.8 0.87 0.97  
 Specificity 0.978 0.966 0.91 0.866 0.89 0.92 0.99  
 Coste 12.14 14.34 123.13 236.88 95.41 510.24 1000  

Appendix D. Information assessment

This appendix provides full details of the information assessment 
procedure employed to develop our value function.

Assume that we want to assess the amount of uncertainty reduced 
by a screening strategy. Let us denote by 𝐶𝑅𝐶 the random variable 
describing the presence of CRC, and 𝑅𝑠 and 𝑅𝑐 the respective variables 
describing the results of screening and colonoscopy. Our interest is 
in calculating 𝑀𝐼(𝐶𝑅𝐶; (𝑅𝑠, 𝑅𝑐 )) where 𝑀𝐼 designates the mutual 
information (MI) function [35]. Both 𝑅𝑠 and 𝑅𝑐 depend on the deci-
sion of which screening test to use and whether or not to perform 
a colonoscopy, while the distribution of 𝐶𝑅𝐶 will depend on the 
evidence collected from its parent nodes in the ID. However, we shall 
not make explicit such dependence to lighten the notation. Then, the 
mutual information is written as
𝑀𝐼(𝐶𝑅𝐶; (𝑅𝑠, 𝑅𝑐 )) =𝑀𝐼(𝐶𝑅𝐶;𝑅𝑠) +𝑀𝐼((𝐶𝑅𝐶;𝑅𝑐 )|𝑅𝑠) (3)

=E𝑐𝑟𝑐,𝑟𝑠

[

log
(

𝑝(𝑐𝑟𝑐, 𝑟𝑠)
𝑝(𝑐𝑟𝑐)𝑝(𝑟𝑠)

)]

+ E𝑐𝑟𝑐,𝑟𝑠 ,𝑟𝑐

[

log
(

𝑝(𝑐𝑟𝑐, 𝑟𝑐 |𝑟𝑠)
𝑝(𝑐𝑟𝑐|𝑟𝑠)𝑝(𝑟𝑐 |𝑟𝑠)

)]

=E𝑐𝑟𝑐,𝑟𝑠 ,𝑟𝑐

[

log
(

𝑝(𝑐𝑟𝑐|𝑟𝑠)
𝑝(𝑐𝑟𝑐)

)

+ log
(

𝑝(𝑐𝑟𝑐|𝑟𝑠, 𝑟𝑐 )
𝑝(𝑐𝑟𝑐|𝑟𝑠)

) ]

.

As the suggested decision in our problem will be based on maximum 
expected utility (hypothesis 4), a natural value function that will ef-
fectively quantify the information provided by a screening strategy 
is

𝑝𝑚𝑖(𝑐𝑟𝑐, 𝑟𝑠, 𝑟𝑐 ) = log
(

𝑝(𝑐𝑟𝑐|𝑟𝑠)
𝑝(𝑐𝑟𝑐)

)

+ log
(

𝑝(𝑐𝑟𝑐|𝑟𝑠, 𝑟𝑐 )
𝑝(𝑐𝑟𝑐|𝑟𝑠)

)

,

which we designate the pointwise mutual information of 𝐶𝑅𝐶 and 
(𝑅𝑠, 𝑅𝑐 ). Although the domain of this function is the set of real numbers, 
the MI (that is, the expectation of the PMI) will always be positive and 
bounded by the entropy of either of the variables. As we are interested 
in the uncertainty concerning the presence of 𝐶𝑅𝐶, we normalize the
MI dividing it by its entropy 𝐻(𝐶𝑅𝐶) = −

∑

𝑝(𝑐𝑟𝑐) log 𝑝(𝑐𝑟𝑐), so that 
the final value function lies in the interval [0, 1]. In summary, the value 
of information 𝑣  provided by a screening strategy concerning the 
𝑖𝑛𝑓𝑜
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Table 22
Probabilities and expected costs of complications for CRC interventions.
 gFOBT FIT BlbBsd sDNA CTC CC Colons Cost  
 None 1 1 1 1 0.9996 0.9997 0.998 0e  
 Bleed. 0 0 0 0 0 0 0.0006 1241e 
 Reten. 0 0 0 0 0 0.0003 0 1241e 
 Perfor. 0 0 0 0 0.0004 0 0.001 2810e 
 Other 0 0 0 0 0 0 0.0004 6621e 
Table 23
Eliciting parameter 𝜆𝑘. X indicates the preferred alternative in the corresponding pairwise comparison.
 Comfort Scr. method Cost Info Preference Indiff. cost 𝜆̂𝑘 𝜆𝑘  
 1 Colonos 1000 0.530 –

𝜆1 = 4.01 𝜆1 = 4.01
 

 Synth. – 0.4 × 300e  
 2 CTC 95.41 0.159 × –

𝜆2 = 4.17 𝜆2 = 4.17
 

 CC 510.24 0.225 180e  
 3 gFOBT 12.14 0.129 3e

𝜆3 = 5.04

𝜆̄3 = 6.80

 
 FIT 14.34 0.245 × –  
 3 gFOBT 12.14 0.128 × –

𝜆3 = 10.57
 

 Blood test 125.13 0.121 10e  
 3 gFOBT 12.14 0.128 × –

𝜆3 = 16.28
 

 sDNA 236.88 0.197 170e  
 3 FIT 14.34 0.244 × –

𝜆3 = 6.40
 

 Blood test 125.13 0.121 1.5e  
 3 FIT 14.34 0.244 × –

𝜆3 = 7.2
 

 sDNA 236.88 0.197 6e  
 3 Blood test 125.13 0.121 80e

𝜆3 = 6.17
 

 sDNA 236.88 0.197 × –  
 4 No scr. 0 0 – – – 𝜆4 = 7  
presence of CRC will be given by the normalized or relative pointwise 
mutual information (RPMI) defined through 
𝑣𝑖𝑛𝑓𝑜(𝑐𝑟𝑐, 𝑟𝑠, 𝑟𝑐 ) = 𝑝𝑚𝑖(𝑐𝑟𝑐, 𝑟𝑠, 𝑟𝑐 )

/

𝐻(𝐶𝑅𝐶). (4)

Intuitively, the expected value of this function refers to the propor-
tion of uncertainty reduced by the screening strategy from the total 
uncertainty in relation to the presence of 𝐶𝑅𝐶.

Tables  4 and 5 respectively provide the 𝑣𝑖𝑛𝑓𝑜 for our benchmark 
patient when not undertaking screening and when performing FIT. 
Positive values correspond to correct predictions; negative values, to 
wrong ones; and, finally, zero indicates no change in uncertainty. 
Values corresponding to cases in which CRC is present are larger in 
magnitude as they have a low probability. This conforms with the 
argument that a missed CRC positive scenario is much worse than a 
misdiagnosed healthy patient [26].

Recall that we look for the best screening strategy and contemplate 
the decision to perform the colonoscopy depending on the output of 
the first screening. Thus, the value tables will not contain the expected 
𝑣𝑖𝑛𝑓𝑜 but rather the extension of its values depending on the results 
of screening, that is, E𝑐𝑟𝑐,𝑟𝑐 |𝑟𝑠 [𝑣𝑖𝑛𝑓𝑜], which does not necessarily lie 
in the [0, 1] interval, as Table  6 portrays. Indeed, observe how for 
the first alternative regarding no screening, the value lies in [0, 1] as 
no other result is possible and, thus, coincides with its expectation. 
When screening is performed, not much information is gained when 
the result predicts false, the most likely scenario in general. However, 
the information provided is much larger when the prediction is true, 
increasing its value when a colonoscopy is further performed. Notice 
how in a low prevalence scenario highly specific tests, like FIT, provide 
more information, whereas highly sensitive tests, like sDNA, do not 
have as much of an impact.

Fig.  3 plots the 𝑣𝑖𝑛𝑓𝑜 function for all possible values of the proba-
bility of having CRC facilitating comparison of screening methods in 
terms of information. Observe that blood-test, CTC, and gFOBT are 
bounded above by the rest of screening methods in terms of the infor-
mation measure used. From this, we conclude that we could discard 
blood-test and CTC as they are equal or worse to FIT in the four 
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criteria (information, comfort, specificity, sensitivity) considered. This is 
not the case, however, for gFOBT as it is the cheapest method and 
has non-dominated performance metrics. Further observe that at very 
low probabilities of CRC, FIT is the method that provides the best 
information on its own.

Note that the asymmetries of 𝑣𝑖𝑛𝑓𝑜 in Fig.  3 derive from the differ-
ences between specificity and sensitivity. More specific tests, like FIT, 
take their maximum at lower 𝑝(𝐶𝑅𝐶) values, whereas more sensitive 
ones, like sDNA, do so at larger 𝑝(𝐶𝑅𝐶) values.
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